Articles: hyperalgesia.
-
The cellular and molecular pathophysiological mecha\nisms of pain processing in neglected parasitic infections such as leishmaniasis remain unknown. The present study evaluated the participation of spinal cord glial cells in the pathophysiology of pain induced by Leishmania amazonensis infection in BALB/c mice. ⋯ L. amazonensis skin infection produces chronic pain by central mechanisms involving spinal cord astrocytes and microglia-related production of cytokines and chemokines, and NFκB activation contributes to L. amazonensis infection-induced hyperalgesia and neuroinflammation.
-
Neuropathic pain can develop after nerve injury, leading to a chronic condition with spontaneous pain and hyperalgesia. Pain is typically restricted to the side of the injured nerve, but may occasionally spread to the contralateral side, a condition that is often referred to as mirror-image pain. Mechanisms leading to mirror-image pain are not completely understood, but cannabinoid CB2 receptors have been implicated. ⋯ This behavioral pain phenotype was accompanied by an increased staining of microglia in the dorsal horn of the spinal cord, as evidenced by an enhanced Iba 1 expression [CB2KO, p = 0.0175; CB2-LysM, p = 0.0425]. Similarly, myeloid-selective knockouts showed an increased expression of the leptin receptor in the injured ipsilateral sciatic nerve, thus further supporting the notion that leptin signaling contributes to the increased neuropathic pain responses of CB2 receptor knockout mice. We conclude that CB2 receptors on microglia and macrophages, but not on neurons, modulate neuropathic pain responses.
-
Reg Anesth Pain Med · May 2019
Ultrasound therapy reduces persistent post-thoracotomy tactile allodynia and spinal substance P expression in rats.
Therapeutic ultrasound (TU) alleviates nerve injury-associated pain, while the molecular mechanisms are less clear. This is an investigator-initiated experimental study to evaluate the mechanisms and effects of ultrasound on prolonged post-thoracotomy pain in a rodent model. ⋯ The results of this study suggest an increase in mechanical withdrawal thresholds and subcutaneous temperature, as well as a downregulation of spinal substance P and IL-1β, in the group which received ultrasound treatment. The regulation of spinal substance P and IL-1β may mediate potential effects of this non-invasive treatment.
-
Pain-related diseases are the top leading causes of life disability. Identifying brain regions involved in persistent neuronal changes will provide new insights for developing efficient chronic pain treatment. Here, we showed that anterior nucleus of paraventricular thalamus (PVA) plays an essential role in the development of mechanical hyperalgesia in neuropathic and inflammatory pain models in mice. ⋯ At the circuitry level, PVA received innervation from central nucleus of amygdala, a known pain-associated locus. As a result, activation of right central nucleus of amygdala with blue light was enough to induce persistent mechanical hyperalgesia. These findings support the idea that targeting PVA can be a potential therapeutic strategy for pain relief.
-
Pain models are commonly used in drug development to demonstrate analgesic activity in healthy subjects and should therefore not cause long-term adverse effects. The ultraviolet B (UVB) model is a model for inflammatory pain in which three times the minimal erythema dose (3MED) is typically applied to induce sensitization. Based on reports of long-lasting postinflammatory hyperpigmentation (PIH) associated with 3MED, it was decided to investigate the prevalence of PIH among subjects who were previously exposed to 3MED at our research centre. In addition, re-evaluation of the UVB inflammation model using a reduced exposure paradigm (2MED) was performed in healthy subjects. ⋯ Postinflammatory hyperpigmentation is an unwanted long-term side effect associated with the UVB inflammation model using the 3× minimal erythema dose (3MED) paradigm. In contrast, using a 2MED paradigm results in hyperalgesia that is stable for 36 hr and has a lower risk of inducing postinflammatory hyperpigmentation.