Articles: treatment.
-
Vitamin C can be a potential adjunctive treatment option for critically ill individuals due to its pleiotropic effects as electron donor in many enzymatic reactions throughout the body. Recently, several important randomized controlled trials (RCTs) investigating vitamin C in critically ill patients have been published. ⋯ Future work should address optimal vitamin C timing, since early versus late drug administration are likely distinct, and duration of therapy, where withdrawal-induced injury is possible. Additionally accurate assessment of body stores with determination of individual vitamin requirements is crucial to ascertain patient and subgroups most likely to benefit from vitamin C.
-
A diagnosis of interstitial lung diseases (ILD) can be challenging, and the identification of an associated connective tissue disease (CTD) is crucial to estimate prognosis and to establish the optimal treatment approach. Diagnostic delay, limited expertise, and fragmented care are barriers that impede the delivery of comprehensive health care for patients with rare, complex, and multiorgan diseases such as CTD and ILD. In this article, we present our perspective on the interdisciplinary diagnosis and interprofessional treatment of patients with ILD and suspected CTD or CTD at risk of ILD. ⋯ Furthermore, we focus on specific benefits and challenges of joint interdisciplinary and interprofessional patient consultations. The importance of rheumatology and pulmonology assessments in specific patient populations is emphasized. Finally, we explore future directions and discuss potential strategies to improve care delivery for patients with CTD-associated ILD.
-
Randomized Controlled Trial
Point-of-care C-reactive protein measurement by community health workers safely reduces antimicrobial use among children with respiratory illness in rural Uganda: A stepped wedge cluster randomized trial.
Acute respiratory illness (ARI) is one of the most common reasons children receive antibiotic treatment. Measurement of C-reaction protein (CRP) has been shown to reduce unnecessary antibiotic use among children with ARI in a range of clinical settings. In many resource-constrained contexts, patients seek care outside the formal health sector, often from lay community health workers (CHW). This study's objective was to determine the impact of CRP measurement on antibiotic use among children presenting with febrile ARI to CHW in Uganda. ⋯ Incorporating CRP measurement into iCCM algorithms for evaluation of children with febrile ARI by CHW in rural Uganda decreased antibiotic use. There is evidence that this decrease was not associated with worse clinical outcomes, although the number of adverse events was low. These findings support expanded access to simple, point-of-care diagnostics to improve antibiotic stewardship in rural, resource-constrained settings where individuals with limited medical training provide a substantial proportion of care.
-
Sleep and circadian disruption (SCD) are associated with worse outcomes in the ICU population. We discuss sleep, circadian physiology, the role of light in circadian entrainment and its possible role in treating SCD, with special attention to the use of light therapies and ICU design. ⋯ Further investigation is needed to define the optimal physical properties of light therapy in the ICU environment as well as timing and duration of light treatments. Work in this area will inform future circadian-promoting design, as well as multicomponent nonpharmacological protocols, to mitigate ICU SCD with the objective of improving patient outcomes.
-
In the coming years, artificial intelligence (AI) and machine learning will likely give rise to profound changes in the field of emergency medicine, and medicine more broadly. This article discusses these anticipated changes in terms of 3 overlapping yet distinct stages of AI development. It reviews some fundamental concepts in AI and explores their relation to clinical practice, with a focus on emergency medicine. In addition, it describes some of the applications of AI in disease diagnosis, prognosis, and treatment, as well as some of the practical issues that they raise, the barriers to their implementation, and some of the legal and regulatory challenges they create.