Articles: intensive-care-units.
-
Anesthesia and analgesia · Nov 2023
ReviewCapnography-An Essential Monitor, Everywhere: A Narrative Review.
Capnography is now recognized as an indispensable patient safety monitor. Evidence suggests that its use improves outcomes in operating rooms, intensive care units, and emergency departments, as well as in sedation suites, in postanesthesia recovery units, and on general postsurgical wards. Capnography can accurately and rapidly detect respiratory, circulatory, and metabolic derangements. ⋯ New capnography equipment, which overcomes cost and context barriers, has recently been developed. Increasing access to capnography in low- and middle-income countries must occur to improve patient outcomes and expand universal health care. It is time to extend capnography's safety benefits to all patients, everywhere.
-
Despite cefoxitin's in vitro resistance to hydrolysis by extended-spectrum beta-lactamases (ESBL), treatment of ESBL-producing Klebsiella pneumoniae (KP) infections with cefoxitin remains controversial. The aim of our study was to compare the clinical efficacy of cefoxitin as definitive antibiotic therapy for patients with ESBL-KP bacteremia in intensive care unit, versus carbapenem therapy. ⋯ Our results suggest that cefoxitin as definitive antibiotic therapy could be a therapeutic option for some ESBL-KP bacteremia, sparing carbapenems and reducing the selection of carbapenem-resistant Pseudomonas aeruginosa strains.
-
Sepsis is associated with significant mortality and morbidity among critically ill patients admitted to intensive care units and represents a major health challenge globally. Given the significant clinical and biological heterogeneity among patients and the dynamic nature of the host immune response, identifying those at high risk of poor outcomes remains a critical challenge. Here, we performed secondary analysis of publicly available time-series gene-expression datasets from peripheral blood of patients admitted to the intensive care unit to elucidate temporally stable gene-expression markers between sepsis survivors and nonsurvivors. ⋯ Our model had robust performance in a test dataset, where patients' transcriptome was sampled at alternate time points, with an area under the curve of 0.89 (95% CI, 0.82-0.96) upon 5-fold cross-validation. We also identified 7 potential biomarkers of sepsis mortality (STAT5A, CX3CR1, LCP1, SNRPG, RPS27L, LSM5, SHCBP1) that require future validation. Pending prospective testing, our model may be used to identify sepsis patients with high risk of mortality accounting for the dynamic nature of the disease and with potential therapeutic implications.