Articles: coronavirus.
-
The availability of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) serologic testing has rapidly increased. Current assays use a variety of technologies, measure different classes of immunoglobulin or immunoglobulin combinations and detect antibodies directed against different portions of the virus. The overall accuracy of these tests, however, has not been well-defined. The Infectious Diseases Society of America (IDSA) convened an expert panel to perform a systematic review of the coronavirus disease 2019 (COVID-19) serology literature and construct best practice guidance related to SARS-CoV-2 serologic testing. This guideline is the fourth in a series of rapid, frequently updated COVID-19 guidelines developed by IDSA. ⋯ Information on the clinical performance and utility of SARS-CoV-2 serologic tests are rapidly emerging. Based on available evidence, detection of anti-SARS-CoV-2 antibodies may be useful for confirming the presence of current or past infection in selected situations. The panel identified three potential indications for serologic testing including: 1) evaluation of patients with a high clinical suspicion for COVID-19 when molecular diagnostic testing is negative and at least two weeks have passed since symptom onset; 2) assessment of multisystem inflammatory syndrome in children; and 3) for conducting serosurveillance studies. The certainty of available evidence supporting the use of serology for either diagnosis or epidemiology was, however, graded as very low to moderate.
-
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an emerging coronavirus that has resulted in more than 2 000 000 laboratory-confirmed cases including over 145 000 deaths. Although SARS-CoV-2 and SARS-CoV share a number of common clinical manifestations, SARS-CoV-2 appears to be highly efficient in person-to-person transmission and frequently causes asymptomatic or presymptomatic infections. However, the underlying mechanisms that confer these viral characteristics of high transmissibility and asymptomatic infection remain incompletely understood. ⋯ Our study provides the first quantitative data on the comparative replication capacity and immune activation profile of SARS-CoV-2 and SARS-CoV infection in human lung tissues. Our results provide important insights into the pathogenesis, high transmissibility, and asymptomatic infection of SARS-CoV-2.
-
We aimed to clarify high-risk factors for coronavirus disease 2019 (COVID-19) with multivariate analysis and establish a predictive model of disease progression to help clinicians better choose a therapeutic strategy. ⋯ Using the CALL score model, clinicians can improve the therapeutic effect and reduce the mortality of COVID-19 with more accurate and efficient use of medical resources.
-
ACS infectious diseases · Sep 2020
ReviewClinical and Laboratory Diagnosis of SARS-CoV-2, the Virus Causing COVID-19.
In December 2019, a novel beta (β) coronavirus eventually named SARS-CoV-2 emerged in Wuhan, Hubei province, China, causing an outbreak of severe and even fatal pneumonia in humans. The virus has spread very rapidly to many countries across the world, resulting in the World Health Organization (WHO) to declare a pandemic on March 11, 2020. ⋯ Therefore, laboratory diagnosis is crucial for the clinical management of patients and the implementation of disease control strategies to contain SARS-CoV-2 at clinical and population level. Here, we summarize the main clinical and imaging findings of COVID-19 patients and discuss the advances, features, advantages, and limitations of different laboratory methods used for SARS-CoV-2 diagnosis.
-
Editorial Review Comparative Study
Why COVID-19 Transmission Is More Efficient and Aggressive Than Viral Transmission in Previous Coronavirus Epidemics?
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is causing a pandemic of coronavirus disease 2019 (COVID-19). The worldwide transmission of COVID-19 from human to human is spreading like wildfire, affecting almost every country in the world. ⋯ There are also four other CoVs capable of infecting humans (HCoVs), which circulate continuously in the human population, but their phenotypes are generally mild, and these HCoVs received relatively little attention. These dramatic differences between infection with HCoVs, SARS-CoV, MERS-CoV, and SARS-CoV-2 raise many questions, such as: Why is COVID-19 transmitted so quickly? Is it due to some specific features of the viral structure? Are there some specific human (host) factors? Are there some environmental factors? The aim of this review is to collect and concisely summarize the possible and logical answers to these questions.