Articles: coronavirus.
-
J. Microbiol. Biotechnol. · Aug 2020
ReviewProgress and Challenges in the Development of COVID-19 Vaccines and Current Understanding of SARS-CoV-2- Specific Immune Responses.
The outbreak of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is spreading globally, and the WHO has declared this outbreak a pandemic. Vaccines are an effective way to prevent the rapid spread of COVID-19. ⋯ Here, we review the current understanding of vaccine targets and the status of vaccine development for COVID-19. We also describe host immune responses to highly pathogenic human coronaviruses in terms of innate and adaptive immunities.
-
The highly infective coronavirus disease 19 (COVID-19) is caused by a novel strain of coronaviruses - the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) - discovered in December 2019 in the city of Wuhan (Hubei Province, China). Remarkably, COVID-19 has rapidly spread across all continents and turned into a public health emergency, which was ultimately declared as a pandemic by the World Health Organization (WHO) in early 2020. SARS-CoV-2 presents similar aspects to other members of the coronavirus family, mainly regarding its genome, protein structure and intracellular mechanisms, that may translate into mild (or even asymptomatic) to severe infectious conditions. ⋯ Specifically, here we describe the potential mechanisms of cellular interaction and signaling pathways, elicited by functional receptors, in major targeted tissues/organs from the respiratory, gastrointestinal (GI), cardiovascular, renal, and nervous systems. Furthermore, the potential involvement of these signaling pathways in evoking the onset and progression of COVID-19 symptoms in these organ systems are presently discussed. A brief description of future perspectives related to potential COVID-19 treatments is also highlighted.
-
In December 2019, a new strain of the SARS-CoV-2 coronavirus was reported in Wuhan, China, which produced severe lung involvement and progressed to respiratory distress. To date, more than seventeen million confirmed cases and more than half a million died worldwide from COVID-19. Patients with cardiovascular disease are more susceptible to contracting this disease and presenting more complications. ⋯ Patients with heart failure and COVID-19 are a diagnostic dilemma because the signs of acute heart failure could be masked. On the other hand, in patients with acute coronary syndrome, the initial therapeutic approach could change in the context of the pandemic, although only based on expert opinions. Nonetheless, many controversial issues will be the subject of future research.
-
Study of a SARS-CoV-2 Outbreak in a Belgian Military Education and Training Center in Maradi, Niger.
Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) compromises the ability of military forces to fulfill missions. At the beginning of May 2020, 22 out of 70 Belgian soldiers deployed to a military education and training center in Maradi, Niger, developed mild COVID-19 compatible symptoms. Immediately upon their return to Belgium, and two weeks later, all seventy soldiers were tested for SARS-CoV-2 RNA (RT-qPCR) and antibodies (two immunoassays). ⋯ Conventional and genomic epidemiological data suggest that these genomes have an African most recent common ancestor and that the Belgian military service men were infected through contact with locals. The medical military command implemented testing of all Belgian soldiers for SARS-CoV-2 viral load and antibodies, two to three days before their departure on a mission abroad or on the high seas, and for specific missions immediately upon their return in Belgium. Some military operational settings (e.g., training camps in austere environments and ships) were also equipped with mobile infectious disease (COVID-19) testing capacity.