Articles: coronavirus.
-
Journal of virology · Jun 2018
Porcine Deltacoronavirus Engages the Transmissible Gastroenteritis Virus Functional Receptor Porcine Aminopeptidase N for Infectious Cellular Entry.
Identification of cellular receptors used by coronavirus (CoV) entry into the host cells is critical to an understanding of pathogenesis and to development of intervention strategies. The fourth CoV genus, Deltacoronavirus, evolutionarily related to the Gammacoronavirus, has just been defined recently. In the current study, we demonstrate that porcine aminopeptidase N (pAPN) acts as a cross-genus CoV functional receptor for both enteropathogenic porcine deltacoronovirus (PDCoV) and alphacoronovirus (AlphaCoV) (transmissible gastroenteritis virus [TGEV]) based upon three lines of evidence. ⋯ Porcine coronaviruses, including the newly discovered porcine deltacoronavirus (PDCoV) associated with diarrhea in newborn piglets, have posed a serious threat to the pork industry in Asia and North America. Here, we report that PDCoV employs the alphacoronavirus TGEV functional receptor porcine aminopeptidase N (pAPN) for cellular entry, demonstrating the usage of pAPN as a cross-genus CoV functional receptor. The identification of the PDCoV receptor provides another example of the expanded host range of CoV and paves the way for further investigation of PDCoV-host interaction and pathogenesis.
-
Am. J. Respir. Crit. Care Med. · Mar 2018
Multicenter StudyCorticosteroid Therapy for Critically Ill Patients with the Middle East Respiratory Syndrome.
Corticosteroid therapy is commonly used among critically ill patients with Middle East Respiratory Syndrome (MERS), but its impact on outcomes is uncertain. Analyses of observational studies often do not account for patients' clinical condition at the time of corticosteroid therapy initiation. ⋯ Corticosteroid therapy in patients with MERS was not associated with a difference in mortality after adjustment for time-varying confounders but was associated with delayed MERS coronavirus RNA clearance. These findings highlight the challenges and importance of adjusting for baseline and time-varying confounders when estimating clinical effects of treatments using observational studies.
-
Journal of virology · Mar 2018
Identification of Residues Controlling Restriction versus Enhancing Activities of IFITM Proteins on Entry of Human Coronaviruses.
Interferon-induced transmembrane proteins (IFITMs) are restriction factors that inhibit the infectious entry of many enveloped RNA viruses. However, we demonstrated previously that human IFITM2 and IFITM3 are essential host factors facilitating the entry of human coronavirus (HCoV) OC43. In a continuing effort to decipher the molecular mechanism underlying IFITM differential modulation of HCoV entry, we investigated the roles of structural motifs important for IFITM protein posttranslational modifications, intracellular trafficking, and oligomerization in modulating the entry of five HCoVs. ⋯ IMPORTANCE The differential effects of IFITM proteins on the entry of HCoVs that utilize divergent entry pathways and membrane fusion mechanisms even when using the same receptor make the HCoVs a valuable system for comparative investigation of the molecular mechanisms underlying IFITM restriction or promotion of virus entry into host cells. Identification of three distinct mutations that converted IFITM1 or IFITM3 from inhibitors to enhancers of MERS-CoV or SARS-CoV spike protein-mediated entry revealed key structural motifs or residues determining the biological activities of IFITM proteins. These findings have thus paved the way for further identification of viral and host factors that interact with those structural motifs of IFITM proteins to differentially modulate the infectious entry of HCoVs.
-
Emerging coronaviruses (CoVs) cause severe disease in humans, but no approved therapeutics are available. The CoV nsp14 exoribonuclease (ExoN) has complicated development of antiviral nucleosides due to its proofreading activity. We recently reported that the nucleoside analogue GS-5734 (remdesivir) potently inhibits human and zoonotic CoVs in vitro and in a severe acute respiratory syndrome coronavirus (SARS-CoV) mouse model. ⋯ Following selection with the GS-5734 parent nucleoside, 2 amino acid substitutions in the nsp12 polymerase at residues that are identical across CoVs provide low-level resistance to GS-5734. The resistance mutations decrease viral fitness of MHV in vitro and attenuate pathogenesis in a SARS-CoV animal model of infection. Together, these studies define the target of GS-5734 activity and demonstrate that resistance is difficult to select, only partial, and impairs fitness and virulence of MHV and SARS-CoV, supporting further development of GS-5734 as a potential effective pan-CoV antiviral.
-
Journal of virology · Dec 2017
Structurally Guided Removal of DeISGylase Biochemical Activity from Papain-Like Protease Originating from Middle East Respiratory Syndrome Coronavirus.
Middle East respiratory syndrome coronavirus (MERS-CoV) is an emerging human pathogen that is the causative agent for Middle East respiratory syndrome (MERS). With MERS outbreaks resulting in over 35% fatalities and now spread to 27 countries, MERS-CoV poses a significant ongoing threat to global human health. As part of its viral genome, MERS-CoV encodes a papain-like protease (PLpro) that has been observed to act as a deubiquitinase and deISGylase to antagonize type I interferon (IFN-I) immune pathways. ⋯ The first structure of MERS-CoV PLpro in complex with this domain exposed the interface between these two entities. Employing these structural insights, mutations were employed to selectively remove deISGylase activity with no appreciable impact on its other deubiquitinase and peptide cleavage biochemical properties. Excitingly, this study introduces a new tool to probe the pathogenesis of MERS-CoV and related viruses through the removal of viral deISGylase activity.