Articles: sepsis.
-
Critical care medicine · Oct 2024
Meta AnalysisBenefits and Harms of Procalcitonin- or C-Reactive Protein-Guided Antimicrobial Discontinuation in Critically Ill Adults With Sepsis: A Systematic Review and Network Meta-Analysis.
In sepsis treatment, antibiotics are crucial, but overuse risks development of antibiotic resistance. Recent guidelines recommended the use of procalcitonin to guide antibiotic cessation, but solid evidence is insufficient. Recently, concerns were raised that this strategy would increase recurrence. Additionally, optimal protocol or difference from the commonly used C-reactive protein (CRP) are uncertain. We aimed to compare the effectiveness and safety of procalcitonin- or CRP-guided antibiotic cessation strategies with standard of care in sepsis. ⋯ In sepsis, procalcitonin- or CRP-guided antibiotic discontinuation strategies may be beneficial and safe. In particular, the usefulness of procalcitonin guidance for current Sepsis-3, where antimicrobials are used for more than 7 days, was supported. Well-designed studies are needed focusing on monitoring protocol and recurrence.
-
Machine learning (ML) has been tried in predicting outcomes following sepsis. This study aims to identify the utility of stacked ensemble algorithm in predicting mortality. ⋯ The random forest showed high accuracy in train and moderate accuracy in the test data. We suggest more regional open-access intensive care databases that can aid making machine learning a bigger support for healthcare personnel.
-
Hypothermia is associated with poor outcomes in sepsis patients, and hypothermic sepsis patients exhibit temperature alterations during initial treatment. The objective of this study was to classify hypothermic sepsis patients based on body temperature trajectories and investigate the associations of these patients with 28-day mortality. ⋯ In hypothermic sepsis patients, an increase of 1 °C or more in body temperature after the initial 6 h is associated with a reduced risk of 28-day mortality.
-
Background: Sepsis commonly leads to skeletal muscle atrophy, characterized by substantial muscle weakness and degeneration, ultimately contributing to an adverse prognosis. Studies have shown that programmed cell death is an important factor in the progression of muscle loss in sepsis. However, the precise role and mechanism of pyroptosis in skeletal muscle atrophy are not yet fully comprehended. ⋯ Studies conducted in living organisms ( in vivo ) and in laboratory conditions ( in vitro ) have shown that the absence of the Gsdmd gene decreases indicators of muscle loss associated with sepsis by blocking the IL18/AMPK signaling pathway. Conclusion: The results of this study demonstrate that the lack of Gsdmd has a beneficial effect on septic skeletal muscle atrophy by reducing the activation of IL18/AMPK and inhibiting the ubiquitin-proteasome system and autophagy pathways. Therefore, our research provides vital insights into the role of pyroptosis in sepsis-related skeletal muscle wasting, which could potentially lead to the development of therapeutic and interventional approaches for preventing septic skeletal muscle atrophy.
-
Sepsis is a life-threatening condition widely studied by animal models. Cecal ligation and puncture (CLP) is still regarded as the gold standard model for sepsis. However, CLP has limitations due to its invasiveness and variability. ⋯ CS model also induced increased production of nitric oxide metabolites and bacterial spread to tissues. CS model causes less animal suffering, it is a nonsurgical model, and, more importantly, it replicates the cardiovascular dysfunction induced by sepsis with better homogeneity than CLP. Therefore, CS model serves as an alternative and possibly as a better model for sepsis research.