Articles: function.
- 
    Observational StudyThe impacts of thyroid function on the diagnostic accuracy of Cystatin C to detect acute kidney injury in ICU patients: a prospective, observational study.Cystatin C (Cysc) could be affected by thyroid function both in vivo and in vitro and thereby may have limited ability to reflect renal function. We aimed to assess the association between Cysc and thyroid hormones as well as the effect of thyroid function on the diagnostic accuracy of Cysc to detect acute kidney injury (AKI). ⋯ There was no significant impact of thyroid function on the diagnostic accuracy of Cysc to detect AKI in ICU patients. However, the optimal cut-off value of Cysc to detect AKI could be affected by thyroid function. 
- 
    
    Mechanical ventilation is a life-saving intervention for patients with respiratory failure or during deep sedation. During continuous mandatory ventilation the diaphragm remains inactive, which activates pathophysiological cascades leading to a loss of contractile force and muscle mass (collectively referred to as ventilator-induced diaphragm dysfunction, VIDD). In contrast to peripheral skeletal muscles this process is rapid and develops after as little as 12 h and has a profound influence on weaning patients from mechanical ventilation as well as increased incidences of morbidity and mortality. ⋯ Levosimendan has also been proven to increase diaphragm contractile forces in humans which may prove to be helpful for patients experiencing difficult weaning. Additionally, antioxidant drugs that scavenge reactive oxygen species have been demonstrated to protect the diaphragm from VIDD in several animal studies. The translation of these drugs into the IUC setting might protect patients from VIDD and facilitate the weaning process. 
- 
    
    Sepsis is still a leading cause of morbidity and mortality, even in modern times, and thrombocytopenia has been closely associated with unfavorable disease outcome. Decreases in mitochondrial membrane potential (depolarization) were found in different tissues during sepsis. Previous work suggests that mitochondrial dysfunction of platelets correlates with clinical disease activity in sepsis. However, platelet mitochondrial membrane potential (Mmp) has not been investigated in a clinical follow-up design and not with regard to disease outcome. ⋯ In this study, we demonstrated that mitochondrial membrane depolarization in platelets correlates with clinical disease severity in patients with sepsis during the disease course and may be a valuable adjunct parameter to aid in the assessment of disease severity, risk stratification, and clinical outcome. 
- 
    
    Cardio-renal syndromes are characterized by the impairment of cardiac and renal functions. Plasma and urinary neutrophil gelatinase-associated lipocalin (NGAL), and plasma B-type natriuretic peptide (BNP) are markers of acute kidney injury (AKI) and heart failure (HF), respectively. ⋯ Plasma NGAL increases markedly with the reduction in GFR, generating a very high number of false positive diagnoses of AKI in stable CKD patients. The grade of GFR impairment and the cause of kidney disease have a lower effect on urinary NGAL and on plasma BNP. In any case, specific reference values of NGAL and BNP should be used in chronic kidney disease patients, according to their functional stage, when assessing acute kidney injury, heart failure, and cardio-renal syndromes in patients with impaired GFR. 
- 
    
    A major consequence of ICU-acquired weakness (ICUAW) is diaphragm weakness, which prolongs the duration of mechanical ventilation. Hyperglycemia (HG) is a risk factor for ICUAW. However, the mechanisms underlying HG-induced respiratory muscle weakness are not known. Excessive reactive oxygen species (ROS) injure multiple tissues during HG, but only one study suggests that excessive ROS generation may be linked to HG-induced diaphragm weakness. We hypothesized that HG-induced diaphragm dysfunction is mediated by excessive superoxide generation and that administration of a specific superoxide scavenger, polyethylene glycol superoxide dismutase (PEG-SOD), would ameliorate these effects. ⋯ HG-induced reductions in diaphragm force generation occur largely at the level of the contractile proteins, are associated with depletion of troponin T and increased indices of oxidative stress, findings not previously reported. Importantly, administration of PEG-SOD largely ablated these derangements, indicating that superoxide generation plays a major role in hyperglycemia-induced diaphragm dysfunction. This new mechanistic information could explain how HG alters diaphragm function during critical illness.