Articles: function.
-
Critical care medicine · Nov 2016
Protection of Brain Injury by Amniotic Mesenchymal Stromal Cell-Secreted Metabolites.
To define the features of human amniotic mesenchymal stromal cell secretome and its protective properties in experimental models of acute brain injury. ⋯ Human amniotic mesenchymal stromal cell-secreted factors protect the brain after acute injury. Importantly, a fraction rich in metabolites, and containing neither proteic nor ribonucleic molecules was protective. This study indicates the profiling of protective factors that could be useful in cell-free therapeutic approaches for acute brain injury.
-
Hepatic ischemia-reperfusion (HIR) injury is a complication of liver surgery. As much as 50% of hepatocytes undergo apoptosis within the first 24 h of reperfusion. The neurotransmitters of the vagus nerve can activate α7 nicotinic acetylcholine receptor (α7nAChR) on macrophages. The function of Kupffer cells (KCs) determines HIR injury. We hypothesize that the vagus nerve could attenuate HIR-induced hepatocyte apoptosis by activating α7nAChR on KCs. ⋯ The vagus nerve could minimize HIR-induced liver apoptosis through activating α7nAChR on KCs possibly by preventing their excessive ROS production.
-
Anesthesia and analgesia · Nov 2016
Multicenter Study Observational StudyMetabolic Acidosis Assessment in High-Risk Surgeries: Prognostic Importance.
Metabolic acidosis frequently is present in surgical patients; however, different types of metabolic acidosis (hyperlactatemia, hyperchloremia, and others) may have different relationships to perioperative outcomes. We hypothesized that in postoperative surgical patients, distinctive types of metabolic acidosis would correlate differently with the outcomes of high-risk surgeries. ⋯ We found that among patients with different types of acidosis, patients who developed hyperlactatemic metabolic acidosis postoperatively showed greater rates of renal dysfunction within 7 days and hyperlactatemic acidosis represented an independent factor on 30-day mortality in high-risk surgical patients.
-
Anesthesia and analgesia · Nov 2016
ReviewMesopontine Switch for the Induction of General Anesthesia by Dedicated Neural Pathways.
We review evidence that the induction of anesthesia with GABAergic agents is mediated by a network of dedicated axonal pathways, which convey a suppressive signal to remote parts of the central nervous system. The putative signal originates in an anesthetic-sensitive locus in the brainstem that we refer to as the mesopontine tegmental anesthesia area (MPTA). This architecture stands in contrast to the classical notion that anesthetic molecules themselves directly mediate anesthetic induction after global distribution by the vascular circulation. ⋯ Known connectivity of the MPTA provides a scaffold for defining the specific projection pathways that mediate each of the functional components of anesthesia. Because MPTA lesions do not induce coma, the MPTA is not a key arousal nucleus essential for maintaining the awake state. Rather, it appears be a "gatekeeper" of arousal function, a major element in a flip-flop switching mechanism that executes rapid and reversible transitions between the awake and the anesthetic state.
-
Habituation refers to the brain's inhibitory mechanism against sensory overload and its brain correlate has been investigated in the form of a well-defined event-related potential, N100 (N1). Fibromyalgia is an extensively described chronic pain syndrome with concurrent manifestations of reduced tolerance and enhanced sensation of painful and non-painful stimulation, suggesting an association with central amplification of all sensory domains. Among diverse sensory modalities, we utilized repetitive auditory stimulation to explore the anomalous sensory information processing in fibromyalgia as evidenced by N1 habituation. ⋯ Fibromyalgia patients failed to demonstrate auditory N1 habituation to repetitively presenting stimuli, which indicates their compromised early auditory information processing. Our findings provide neurophysiological evidence of inhibitory failure and cortical augmentation in fibromyalgia. WHAT'S ALREADY KNOWN ABOUT THIS TOPIC?: Fibromyalgia has been associated with altered filtering of irrelevant somatosensory input. However, whether this abnormality can extend to the auditory sensory system remains controversial. N!00, an event-related potential, has been widely utilized to assess the brain's habituation capacity against sensory overload. WHAT DOES THIS STUDY ADD?: Fibromyalgia patients showed defect in N100 habituation to repetitive auditory stimuli, indicating compromised early auditory functioning. This study identified deficient inhibitory control over irrelevant auditory stimuli in fibromyalgia.