Articles: critical-illness.
-
Immune organ failure is frequent in critical illness independent of its cause and has been acknowledged for a long time. Most patients admitted to the ICU, whether featuring infection, trauma, or other tissue injury, have high levels of alarmins expression in tissues or systemically which then activate innate and adaptive responses. Although necessary, this response is frequently maladaptive and leads to organ dysfunction. ⋯ Next, we will discuss the strengths and limitations of flow cytometry and related techniques as an essential tool for more in-depth immune monitoring and end with a presentation of the most promising cell associated markers, namely HLA-DR expression on monocytes, neutrophil expression of CD64 and PD-1 expression on T cells. In sum, immune monitoring critically ill patients is a forgotten and missing piece in the monitoring capacity of intensive care units. New technology, including bed-side equipment and in deep cell phenotyping using emerging multiplexing techniques will likely allow the definition of endotypes and a more personalized care in the future.
-
Multicenter Study
Score-based prediction model for severe vitamin D deficiency in patients with critical illness: development and validation.
Severe vitamin D deficiency (SVDD) dramatically increases the risks of mortality, infections, and many other diseases. Studies have reported higher prevalence of vitamin D deficiency in patients with critical illness than general population. This multicenter retrospective cohort study develops and validates a score-based model for predicting SVDD in patients with critical illness. ⋯ This study developed a simple score-based model for predicting SVDD in patients with critical illness.
-
Acute kidney injury (AKI) is common in the critically ill. Inadequate renal medullary tissue oxygenation has been linked to its pathogenesis. Moreover, renal medullary tissue hypoxia can be detected before biochemical evidence of AKI in large mammalian models of critical illness. ⋯ Clinical studies have shown that bladder PuO2 correlates with cardiac output, and that it increases in response to elevated cardiopulmonary bypass (CPB) flow and mean arterial pressure. Clinical observational studies in patients undergoing cardiac surgery involving CPB have shown that bladder PuO2 has prognostic value for subsequent AKI. Thus, continuous bladder PuO2 holds promise as a new clinical tool for monitoring the adequacy of renal medullary oxygenation, with its implications for the recognition and prevention of medullary hypoxia and thus AKI.