Articles: brain-injuries.
-
Neurodegenerative diseases, traumatic brain injury and stroke are likely to result in cognitive dysfunctioning. Animal models are needed in which these deficits and recovery of the affected functions can be investigated. In the present study, the entorhinal area was chosen as the target for lesioning and for assessing the lesion-induced deficits in the Morris water maze. ⋯ The degree of the induced spatial learning impairments and the effects on the rate of acquisition during training, however, differed between experiments. This result suggests that the fundamental biological diversity between shipments of rats can account for variation in the effects of parahippocampal damage on spatial learning even in highly standardized experimental set-ups. Rats lesioned by bilateral injections of ibotenic acid into the entorhinal cortex provide an interesting and reliable model for investigating cognitive dysfunctions in neurodegenerative diseases, stroke or traumatic brain injury.
-
Zentralbl. Neurochir. · Jan 2000
Prognostic significance of advanced neuromonitoring after traumatic brain injury using neural networks.
While the therapeutic impact of tissue oxygenation (PtiO2) supplementing ICP-monitoring is proven by several clinical studies, its prognostic value is not well studied. In the following study artificial neural networks (ANN) were used to analyze the accuracy of outcome prediction after traumatic brain injury (TBI) for different combinations of clinical data and parameters derived from neuromonitoring. The total group included 95 patients suffering from TBI. ⋯ A combination of all parameters lead to results lying between the above results. The results indicate that prediction of outcome can be improved by combining clinical and neuromonitoring data. The prognostic value of ICP might be superior to that of PtiO2.
-
J. Tongji Med. Univ. · Jan 2000
Changes of nitric oxide and its relationship with clinical features, intracranial pressure and outcome in acute head injury.
To investigate the content and dynamics of nitric oxide (NO) in the cerebrospinal fluid (CSF) of patients with acute head injury and to clarify the relationship of NO with clinical features and intracranial pressure (ICP) as well as outcomes, 38 adults with acute head injury were studied. Glasgow Coma Scale (GCS) obtained at admission and Glasgow Outcome Scale (GOS) 3 months after injury was assessed. ICP was surveyed via intraventricular catheter and lumbar puncture and CSF samples were obtained simultaneously. ⋯ It is concluded that the content of NO was increased in patients with acute head injury and the changes of NO had different time windows in severely injured patients and mildly injured ones. The more sever the injury, the higher the NO content; and the more serious the secondary brain injury and brain edema, the worse the outcomes. When NO is combined with GCS, GOS and ICP, it increases the accuracy of judgement to the degree of head injury and outcome.
-
Mannitol is sometimes dramatically effective in reversing acute brain swelling, but its effectiveness in the on-going management of severe head injury remains open to question. There is evidence that in prolonged dosage mannitol may pass from the blood into the brain, where it might cause reverse osmotic shifts that increase intracranial pressure. ⋯ There are insufficient data to recommend one form of mannitol infusion over another. Mannitol therapy for raised ICP may have a beneficial effect on mortality when compared to pentobarbital treatment. ICP-directed treatment shows a small beneficial effect compared to treatment directed by neurological signs and physiological indicators. There are insufficient data on the effectiveness of pre-hospital administration of mannitol to preclude either a harmful or a beneficial effect on mortality.