Articles: brain-injuries.
-
Journal of neurotrauma · Nov 2024
Trajectories of Recovery Following Traumatic Brain Injury among Older Medicare Beneficiaries.
It is well-known that older adults have poorer recovery following traumatic brain injury (TBI) relative to younger adults with similar injury severity. However, most older adults do recover well from TBI. Identifying those at increased risk of poor recovery could inform appropriate management pathways, facilitate discussions about palliative care or unmet needs, and permit targeted intervention to optimize quality of life or recovery. ⋯ Recovery of monthly home time was complete for most by 3 months post injury. An important sub-group comprising 10% of patients who did not return home was characterized primarily by eligibility for Medicaid and diagnosis of ADRD. Future studies should seek to further characterize and investigate identified recovery groups to inform management and development of interventions to improve recovery.
-
Journal of neurotrauma · Nov 2024
Is There an Optimal Time Window of Placement of Intracranial Pressure (ICP) Monitor for Elderly Patients with Severe Traumatic Brain Injury? An 11-Year Institutional Cohort Study with Restricted Cubic Spline Analysis.
Severe traumatic brain injury (sTBI) is a prominent contributor to both morbidity and mortality in the elderly population. The monitoring of intracranial pressure (ICP) is crucial in the management of sTBI patients. Nevertheless, the appropriate timing for the placement of ICP monitor in elderly sTBI patients remains uncertain. ⋯ The relationship between ICP placement and in-hospital mortality was non-linear, exhibiting an inverted U-shaped curve in elderly patients with sTBI. For elderly patients with sTBI, early (≤ 6 h) ICP placement was associated with reduced in-hospital mortality. The clinical benefit of ICP placement decreased beyond the optimal time window.
-
Journal of neurotrauma · Nov 2024
Intravenous administration of anti-CD47 antibody augments hematoma clearance, mitigates acute neuropathology, and improves cognitive function in a rat model of penetrating traumatic brain injury.
Traumatic brain injury (TBI)-induced intracerebral hematoma is a major driver of secondary injury pathology such as neuroinflammation, cerebral edema, neurotoxicity, and blood-brain barrier dysfunction, which contribute to neuronal loss, motor deficits, and cognitive impairment. Cluster of differentiation 47 (CD47) is an antiphagocytic cell surface protein inhibiting hematoma clearance. This study was designed to evaluate the safety and efficacy of blockade of CD47 via intravenous (i.v.) administration of anti-CD47 antibodies following penetrating ballistic-like brain injury (PBBI) with significant traumatic intracerebral hemorrhage (tICH). ⋯ Spatial learning performance revealed significant deficits in all injured groups, which were significantly improved by the last testing day. Anti-CD47 antibody treated rats showed significantly improved attention deficits, but not retention scores. These results provide preliminary evidence that blockade of CD47 using i.v. administration of anti-CD47 antibodies may serve as a potential therapeutic for TBI with ICH.
-
Traumatic brain injury (TBI)-related morbidity is caused largely by secondary injury resulting from hypoxia, excessive sympathetic drive, and uncontrolled inflammation. Aeromedical evacuation (AE) is used by the military for transport of wounded soldiers to higher levels of care. We hypothesized that the hypobaric, hypoxic conditions of AE may exacerbate uncontrolled inflammation after TBI that could contribute to more severe TBI-related secondary injury. ⋯ The hypobaric environment of AE induces systemic inflammation after TBI. Severe inflammation may play a role in exacerbating secondary injury associated with TBI and contribute to worse neurocognitive outcomes. Measures should be taken to minimize barometric and oxygenation changes during AE after TBI.