-
- Suzie Cro, Gordon Forbes, Nicholas A Johnson, and Brennan C Kahan.
- Imperial Clinical Trials Unit, School of Public Health, Imperial College London, 1st Floor, Stadium House, London, W12 7RH, UK. s.cro@imperial.ac.uk.
- Bmc Med. 2020 May 29; 18 (1): 137137.
BackgroundChoosing or altering the planned statistical analysis approach after examination of trial data (often referred to as 'p-hacking') can bias the results of randomised trials. However, the extent of this issue in practice is currently unclear. We conducted a review of published randomised trials to evaluate how often a pre-specified analysis approach is publicly available, and how often the planned analysis is changed.MethodsA review of randomised trials published between January and April 2018 in six leading general medical journals. For each trial, we established whether a pre-specified analysis approach was publicly available in a protocol or statistical analysis plan and compared this to the trial publication.ResultsOverall, 89 of 101 eligible trials (88%) had a publicly available pre-specified analysis approach. Only 22/89 trials (25%) had no unexplained discrepancies between the pre-specified and conducted analysis. Fifty-four trials (61%) had one or more unexplained discrepancies, and in 13 trials (15%), it was impossible to ascertain whether any unexplained discrepancies occurred due to incomplete reporting of the statistical methods. Unexplained discrepancies were most common for the analysis model (n = 31, 35%) and analysis population (n = 28, 31%), followed by the use of covariates (n = 23, 26%) and the approach for handling missing data (n = 16, 18%). Many protocols or statistical analysis plans were dated after the trial had begun, so earlier discrepancies may have been missed.ConclusionsUnexplained discrepancies in the statistical methods of randomised trials are common. Increased transparency is required for proper evaluation of results.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.