• Cochrane Db Syst Rev · Dec 2019

    Meta Analysis

    Positive airway pressure therapy for the treatment of central sleep apnoea associated with heart failure.

    • Shuhei Yamamoto, Takayoshi Yamaga, Kenichi Nishie, Chie Nagata, and Rintaro Mori.
    • Shinshu University Hospital, Department of Rehabilitation, 3-1-1 Asahi, Matsumoto, Nagano, Japan.
    • Cochrane Db Syst Rev. 2019 Dec 4; 12 (12): CD012803CD012803.

    BackgroundIschaemic heart disease including heart failure is the most common cause of death in the world, and the incidence of the condition is rapidly increasing. Heart failure is characterised by symptoms such as fatigue and breathlessness during light activity, as well as disordered breathing during sleep. In particular, sleep disordered breathing (SDB), including central sleep apnoea (CSA) and obstructive sleep apnoea (OSA), is highly prevalent in people with chronic heart failure. A previous meta-analysis demonstrated that positive airway pressure (PAP) therapy dramatically increased the survival rate of people with heart failure who had CSA, and thus could contribute to improving the prognosis of these individuals. However, recent trials found that adaptive servo-ventilation (ASV) including PAP therapy had a higher risk of all-cause mortality and cardiovascular mortality. A meta-analysis that included recent trials was therefore needed.ObjectivesTo assess the effects of positive airway pressure therapy for people with heart failure who experience central sleep apnoea.Search MethodsWe searched the Cochrane Central Register of Controlled Trials (CENTRAL) in the Cochrane Library, MEDLINE, Embase, and Web of Science Core Collection on 7 February 2019 with no limitations on date, language, or publication status. We also searched two clinical trials registers in July 2019 and checked the reference lists of primary studies.Selection CriteriaWe excluded cross-over trials and included individually randomised controlled trials, reported as full-texts, those published as abstract only, and unpublished data.Data Collection And AnalysisTwo review authors independently extracted outcome data from the included studies. We double-checked that data had been entered correctly by comparing the data presented in the systematic review with study reports. We analysed dichotomous data as risk ratios (RRs) with 95% confidence intervals (CIs) and continuous data as mean difference (MD) or standardised mean difference (SMD) with 95% CIs. Furthermore, we performed subgroup analysis in the ASV group or continuous PAP group separately. We used GRADEpro GDT software to assess the quality of evidence as it relates to those studies that contribute data to the meta-analyses for the prespecified outcomes.Main ResultsWe included 16 randomised controlled trials involving a total of 2125 participants. The trials evaluated PAP therapy consisting of ASV or continuous PAP therapy for 1 to 31 months. Many trials included participants with heart failure with reduced ejection fraction. Only one trial included participants with heart failure with preserved ejection fraction. We are uncertain about the effects of PAP therapy on all-cause mortality (RR 0.81, 95% CI 0.54 to 1.21; participants = 1804; studies = 6; I2 = 47%; very low-quality evidence). We found moderate-quality evidence of no difference between PAP therapy and usual care on cardiac-related mortality (RR 0.97, 95% CI 0.77 to 1.24; participants = 1775; studies = 5; I2 = 11%). We found low-quality evidence of no difference between PAP therapy and usual care on all-cause rehospitalisation (RR 0.95, 95% CI 0.70 to 1.30; participants = 1533; studies = 5; I2 = 40%) and cardiac-related rehospitalisation (RR 0.97, 95% CI 0.70 to 1.35; participants = 1533; studies = 5; I2 = 40%). In contrast, PAP therapy showed some indication of an improvement in quality of life scores assessed by all measurements (SMD -0.32, 95% CI -0.67 to 0.04; participants = 1617; studies = 6; I2 = 76%; low-quality evidence) and by the Minnesota Living with Heart Failure Questionnaire (MD -0.51, 95% CI -0.78 to -0.24; participants = 1458; studies = 4; I2 = 0%; low-quality evidence) compared with usual care. Death due to pneumonia (N = 1, 3% of PAP group); cardiac arrest (N = 18, 3% of PAP group); heart transplantation (N = 8, 1% of PAP group); cardiac worsening (N = 3, 9% of PAP group); deep vein thrombosis/pulmonary embolism (N = 1, 3% of PAP group); and foot ulcer (N = 1, 3% of PAP group) occurred in the PAP therapy group, whereas cardiac arrest (N = 16, 2% of usual care group); heart transplantation (N = 12, 2% of usual care group); cardiac worsening (N = 5, 14% of usual care group); and duodenal ulcer (N = 1, 3% of usual care group) occurred in the usual care group across three trials.Authors' ConclusionsThe effect of PAP therapy on all-cause mortality was uncertain. In addition, although we found evidence that PAP therapy did not reduce the risk of cardiac-related mortality and rehospitalisation, there was some indication of an improvement in quality of life for heart failure patients with CSA. Furthermore, the evidence was insufficient to determine whether adverse events were more common with PAP than with usual care. These findings were limited by low- or very low-quality evidence. PAP therapy may be worth considering for individuals with heart failure to improve quality of life.Copyright © 2019 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.