• Cochrane Db Syst Rev · Dec 2019

    Meta Analysis

    Strength training and aerobic exercise training for muscle disease.

    • Nicoline Bm Voet, Elly L van der Kooi, Baziel Gm van Engelen, and Alexander Ch Geurts.
    • Radboud University Medical Centre, Department of Rehabilitation, Donders Institute for Brain, Cognition and Behaviour, PO Box 9101, Nijmegen, Netherlands, 6500 HB.
    • Cochrane Db Syst Rev. 2019 Dec 6; 12 (12): CD003907CD003907.

    BackgroundStrength training or aerobic exercise programmes, or both, might optimise muscle and cardiorespiratory function and prevent additional disuse atrophy and deconditioning in people with a muscle disease. This is an update of a review first published in 2004 and last updated in 2013. We undertook an update to incorporate new evidence in this active area of research.ObjectivesTo assess the effects (benefits and harms) of strength training and aerobic exercise training in people with a muscle disease.Search MethodsWe searched Cochrane Neuromuscular's Specialised Register, CENTRAL, MEDLINE, Embase, and CINAHL in November 2018 and clinical trials registries in December 2018.Selection CriteriaRandomised controlled trials (RCTs), quasi-RCTs or cross-over RCTs comparing strength or aerobic exercise training, or both lasting at least six weeks, to no training in people with a well-described muscle disease diagnosis.Data Collection And AnalysisWe used standard methodological procedures expected by Cochrane.Main ResultsWe included 14 trials of aerobic exercise, strength training, or both, with an exercise duration of eight to 52 weeks, which included 428 participants with facioscapulohumeral muscular dystrophy (FSHD), dermatomyositis, polymyositis, mitochondrial myopathy, Duchenne muscular dystrophy (DMD), or myotonic dystrophy. Risk of bias was variable, as blinding of participants was not possible, some trials did not blind outcome assessors, and some did not use an intention-to-treat analysis. Strength training compared to no training (3 trials) For participants with FSHD (35 participants), there was low-certainty evidence of little or no effect on dynamic strength of elbow flexors (MD 1.2 kgF, 95% CI -0.2 to 2.6), on isometric strength of elbow flexors (MD 0.5 kgF, 95% CI -0.7 to 1.8), and ankle dorsiflexors (MD 0.4 kgF, 95% CI -2.4 to 3.2), and on dynamic strength of ankle dorsiflexors (MD -0.4 kgF, 95% CI -2.3 to 1.4). For participants with myotonic dystrophy type 1 (35 participants), there was very low-certainty evidence of a slight improvement in isometric wrist extensor strength (MD 8.0 N, 95% CI 0.7 to 15.3) and of little or no effect on hand grip force (MD 6.0 N, 95% CI -6.7 to 18.7), pinch grip force (MD 1.0 N, 95% CI -3.3 to 5.3) and isometric wrist flexor force (MD 7.0 N, 95% CI -3.4 to 17.4). Aerobic exercise training compared to no training (5 trials) For participants with DMD there was very low-certainty evidence regarding the number of leg revolutions (MD 14.0, 95% CI -89.0 to 117.0; 23 participants) or arm revolutions (MD 34.8, 95% CI -68.2 to 137.8; 23 participants), during an assisted six-minute cycle test, and very low-certainty evidence regarding muscle strength (MD 1.7, 95% CI -1.9 to 5.3; 15 participants). For participants with FSHD, there was low-certainty evidence of improvement in aerobic capacity (MD 1.1 L/min, 95% CI 0.4 to 1.8, 38 participants) and of little or no effect on knee extension strength (MD 0.1 kg, 95% CI -0.7 to 0.9, 52 participants). For participants with dermatomyositis and polymyositis (14 participants), there was very low-certainty evidence regarding aerobic capacity (MD 14.6, 95% CI -1.0 to 30.2). Combined aerobic exercise and strength training compared to no training (6 trials) For participants with juvenile dermatomyositis (26 participants) there was low-certainty evidence of an improvement in knee extensor strength on the right (MD 36.0 N, 95% CI 25.0 to 47.1) and left (MD 17 N 95% CI 0.5 to 33.5), but low-certainty evidence of little or no effect on maximum force of hip flexors on the right (MD -9.0 N, 95% CI -22.4 to 4.4) or left (MD 6.0 N, 95% CI -6.6 to 18.6). This trial also provided low-certainty evidence of a slight decrease of aerobic capacity (MD -1.2 min, 95% CI -1.6 to 0.9). For participants with dermatomyositis and polymyositis (21 participants), we found very low-certainty evidence for slight increases in muscle strength as measured by dynamic strength of knee extensors on the right (MD 2.5 kg, 95% CI 1.8 to 3.3) and on the left (MD 2.7 kg, 95% CI 2.0 to 3.4) and no clear effect in isometric muscle strength of eight different muscles (MD 1.0, 95% CI -1.1 to 3.1). There was very low-certainty evidence that there may be an increase in aerobic capacity, as measured with time to exhaustion in an incremental cycle test (17.5 min, 95% CI 8.0 to 27.0) and power performed at VO2 max (maximal oxygen uptake) (18 W, 95% CI 15.0 to 21.0). For participants with mitochondrial myopathy (18 participants), we found very low-certainty evidence regarding shoulder muscle (MD -5.0 kg, 95% CI -14.7 to 4.7), pectoralis major muscle (MD 6.4 kg, 95% CI -2.9 to 15.7), and anterior arm muscle strength (MD 7.3 kg, 95% CI -2.9 to 17.5). We found very low-certainty evidence regarding aerobic capacity, as measured with mean time cycled (MD 23.7 min, 95% CI 2.6 to 44.8) and mean distance cycled until exhaustion (MD 9.7 km, 95% CI 1.5 to 17.9). One trial in myotonic dystrophy type 1 (35 participants) did not provide data on muscle strength or aerobic capacity following combined training. In this trial, muscle strength deteriorated in one person and one person had worse daytime sleepiness (very low-certainty evidence). For participants with FSHD (16 participants), we found very low-certainty evidence regarding muscle strength, aerobic capacity and VO2 peak; the results were very imprecise. Most trials reported no adverse events other than muscle soreness or joint complaints (low- to very low-certainty evidence).Authors' ConclusionsThe evidence regarding strength training and aerobic exercise interventions remains uncertain. Evidence suggests that strength training alone may have little or no effect, and that aerobic exercise training alone may lead to a possible improvement in aerobic capacity, but only for participants with FSHD. For combined aerobic exercise and strength training, there may be slight increases in muscle strength and aerobic capacity for people with dermatomyositis and polymyositis, and a slight decrease in aerobic capacity and increase in muscle strength for people with juvenile dermatomyositis. More research with robust methodology and greater numbers of participants is still required.Copyright © 2019 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…