-
- Michael J Coffey, Millie Garg, Nusrat Homaira, Adam Jaffe, and Chee Y Ooi.
- University of New South Wales, School of Women's and Children's Health, Level 8, Centre for Child Health Research & Innovation Bright Alliance Building Cnr Avoca & High Streets, Randwick, Sydney, NSW, Australia, 2031.
- Cochrane Db Syst Rev. 2020 Jan 22; 1: CD012949.
BackgroundCystic fibrosis (CF) is a multisystem disease and the importance of growth and nutrition has been well established, given its implications for lung function and overall survival. It has been established that intestinal dysbiosis (i.e. microbial imbalance) and inflammation is present in people with CF. Probiotics are commercially available (over-the-counter) and may improve both intestinal and overall health.ObjectivesTo assess the efficacy and safety of probiotics for improving health outcomes in children and adults with CF.Search MethodsWe searched the Cochrane Cystic Fibrosis Trials Register, compiled from electronic database searches and handsearching of journals and conference abstract books. Date of last register search: 20 January 2020. We also searched ongoing trials registries and the reference lists of relevant articles and reviews. Date of last search: 29 January 2019.Selection CriteriaRandomised or quasi-randomised controlled trials (RCTs) assessing efficacies and safety of probiotics in children and adults with CF. Cross-over RCTs with a washout phase were included and for those without a washout period, only the first phase of each trial was analysed.Data Collection And AnalysisWe independently extracted data and assessed the risk of bias of the included trials; we used GRADE to assess the certainty of the evidence. We contacted trial authors for additional data. Meta-analyses were undertaken on outcomes at several time points.Main ResultsWe identified 17 trials and included 12 RCTs (11 completed and one trial protocol - this trial was terminated early) (464 participants). Eight trials included only children, whilst four trials included both children and adults. Trial duration ranged from one to 12 months. Nine trials compared a probiotic (seven single strain and three multistrain preparations) with a placebo preparation, two trials compared a synbiotic (multistrain) with a placebo preparation and one trial compared two probiotic preparations. Overall we judged the risk of bias in the 12 trials to be low. Three trials had a high risk of performance bias, two trials a high risk of attrition bias and six trials a high risk of reporting bias. Only two trials were judged to have low or unclear risk of bias for all domains. Four trials were sponsored by grants only, two trials by industry only, two trials by both grants and industry and three trials had an unknown funding source. Combined data from four trials (225 participants) suggested probiotics may reduce the number of pulmonary exacerbations during a four to 12 month time-frame, mean difference (MD) -0.32 episodes per participant (95% confidence interval (CI) -0.68 to 0.03; P = 0.07) (low-certainty evidence); however, the 95% CI includes the possibility of both an increased and a reduced number of exacerbations. Additionally, two trials (127 participants) found no evidence of an effect on the duration of antibiotic therapy during the same time period. Combined data from four trials (177 participants) demonstrated probiotics may reduce faecal calprotectin, MD -47.4 µg/g (95% CI -93.28 to -1.54; P = 0.04) (low-certainty evidence), but the results for other biomarkers mainly did not show any difference between probiotics and placebo. Two trials (91 participants) found no evidence of effect on height, weight or body mass index (low-certainty evidence). Combined data from five trials (284 participants) suggested there was no difference in lung function (forced expiratory volume at one second (FEV1) % predicted) during a three- to 12-month time frame, MD 1.36% (95% CI -1.20 to 3.91; P = 0.30) (low-certainty evidence). Combined data from two trials (115 participants) suggested there was no difference in hospitalisation rates during a three- to 12-month time frame, MD -0.44 admissions per participant (95% CI -1.41 to 0.54; P = 0.38) (low-certainty evidence). One trial (37 participants) reported health-related quality of life and while the parent report favoured probiotics, SMD 0.87 (95% CI 0.19 to 1.55) the child self-report did not identify any effect, SMD 0.59 (95% CI -0.07 to 1.26) (low-certainty evidence). There were limited results for gastrointestinal symptoms and intestinal microbial profile which were not analysable. Only four trials and one trial protocol (298 participants) reported adverse events as a priori hypotheses. No trials reported any deaths. One terminated trial (12 participants and available as a protocol only) reported a severe allergic reaction (severe urticaria) for one participant in the probiotic group. Two trials reported a single adverse event each (vomiting in one child and diarrhoea in one child). The estimated number needed to harm for any adverse reaction (serious or not) is 52 people (low-certainty evidence). Probiotics significantly reduce faecal calprotectin (a marker of intestinal inflammation) in children and adults with CF, however the clinical implications of this require further investigation. Probiotics may make little or no difference to pulmonary exacerbation rates, however, further evidence is required before firm conclusions can be made. Probiotics are associated with a small number of adverse events including vomiting, diarrhoea and allergic reactions. In children and adults with CF, probiotics may be considered by patients and their healthcare providers. Given the variability of probiotic composition and dosage, further adequately-powered multicentre RCTs of at least 12 months duration are required to best assess the efficacy and safety of probiotics for children and adults with CF.Copyright © 2020 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.