• Cochrane Db Syst Rev · Mar 2020

    Review Meta Analysis

    Diaphragm-triggered non-invasive respiratory support in preterm infants.

    • Dimple Goel, Ju Lee Oei, John Smyth, and Tim Schindler.
    • Westmead Hospital, Neonatal Intensive Care, Hawkesbury Rd & Darcy Road, Westmead, NSW, Australia, 2145.
    • Cochrane Db Syst Rev. 2020 Mar 17; 3: CD012935.

    BackgroundDiaphragm-triggered non-invasive respiratory support, commonly referred to as NIV-NAVA (non-invasive neurally adjusted ventilatory assist), uses the electrical activity of the crural diaphragm to trigger the start and end of a breath. It provides variable inspiratory pressure that is proportional to an infant's changing inspiratory effort. NIV-NAVA has the potential to provide effective, non-invasive, synchronised, multilevel support and may reduce the need for invasive ventilation; however, its effects on short- and long-term outcomes, especially in the preterm infant, are unclear.ObjectivesTo assess the effectiveness and safety of diaphragm-triggered non-invasive respiratory support in preterm infants (< 37 weeks' gestation) when compared to other non-invasive modes of respiratory support (nasal intermittent positive pressure ventilation (NIPPV); nasal continuous positive airway pressure (nCPAP); high-flow nasal cannulae (HFNC)), and to assess preterm infants with birth weight less than 1000 grams or less than 28 weeks' corrected gestation at the time of intervention as a sub-group.Search MethodsWe used the standard search strategy of Cochrane Neonatal to search the Cochrane Central Register of Controlled Trials (CENTRAL 2019, Issue 5), MEDLINE via PubMed (1946 to 10 May 2019), Embase (1947 to 10 May 2019), and CINAHL (1982 to 10 May 2019). We also searched clinical trials databases, conference proceedings, and the reference lists of retrieved articles for randomised controlled trials (RCTs) and quasi-randomised trials.Selection CriteriaRandomised and quasi-randomised controlled trials that compared diaphragm-triggered non-invasive versus other non-invasive respiratory support in preterm infants.Data Collection And AnalysisTwo review authors independently selected trials, assessed trial quality and extracted data from included studies. We performed fixed-effect analyses and expressed treatment effects as mean difference (MD), risk ratio (RR), and risk difference (RD) with 95% confidence intervals (CIs). We used the generic inverse variance method to analyse specific outcomes for cross-over trials. We used the GRADE approach to assess the certainty of evidence.Main ResultsThere were two small randomised controlled trials including a total of 23 infants eligible for inclusion in the review. Only one trial involving 16 infants included in the analysis reported on either of the primary outcomes of the review. This found no difference in failure of modality between NIV-NAVA and NIPPV (RR 0.33, 95% CI 0.02 to 7.14; RD -0.13, 95% CI -0.41 to 0.16; 1 study, 16 infants; heterogeneity not applicable). Both trials reported on secondary outcomes of the review, specific for cross-over trials (total 22 infants; 1 excluded due to failure of initial modality). One study involving seven infants reported a significant reduction in maximum FiO₂ with NIV-NAVA compared to NIPPV (MD -4.29, 95% CI -5.47 to -3.11; heterogeneity not applicable). There was no difference in maximum electric activity of the diaphragm (Edi) signal between modalities (MD -1.75, 95% CI -3.75 to 0.26; I² = 0%) and a significant increase in respiratory rate with NIV-NAVA compared to NIPPV (MD 7.22, 95% CI 0.21 to 14.22; I² = 72%) on a meta-analysis of two studies involving a total of 22 infants. The included studies did not report on other outcomes of interest.Authors' ConclusionsDue to limited data and very low certainty evidence, we were unable to determine if diaphragm-triggered non-invasive respiratory support is effective or safe in preventing respiratory failure in preterm infants. Large, adequately powered randomised controlled trials are needed to determine if diaphragm-triggered non-invasive respiratory support in preterm infants is effective or safe.Copyright © 2020 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…