• Cochrane Db Syst Rev · May 2020

    Review Meta Analysis

    Interventions for preventing venous thromboembolism in adults undergoing knee arthroscopy.

    • Carla Perrotta, Jorge Chahla, Gustavo Badariotti, and Jorge Ramos.
    • School of Public Health, University College Dublin, Dublin, Ireland.
    • Cochrane Db Syst Rev. 2020 May 6; 5: CD005259.

    BackgroundKnee arthroscopy (KA) is a routine orthopedic procedure recommended to repair cruciate ligaments and meniscus injuries and in eligible patients, to assist the diagnosis of persistent knee pain. KA is associated with a small risk of thromboembolic events. This systematic review aims to assess if pharmacological or non-pharmacological interventions may reduce this risk. This review is the second update of the review first published in 2007.ObjectivesTo assess the efficacy and safety of interventions, whether mechanical, pharmacological, or in combination, for thromboprophylaxis in adult patients undergoing KA.Search MethodsFor this update, the Cochrane Vascular Information Specialist searched the Cochrane Vascular Specialised Register, the CENTRAL, MEDLINE, Embase and CINAHL databases, and the World Health Organization International Clinical Trials Registry Platform and ClinicalTrials.gov trials registries, on 14 August 2019.Selection CriteriaWe included randomized controlled trials (RCTs) and controlled clinical trials (CCTs), whether blinded or not, of all types of interventions used to prevent deep vein thrombosis (DVT) in males and females aged 18 years and older undergoing KA. There were no restrictions on language or publication status.Data Collection And AnalysisTwo authors independently selected studies for inclusion, assessed trial quality with the Cochrane 'Risk of bias' tool, and extracted data. A third author addressed discrepancies. We contacted study authors for additional information when required. We used GRADE to assess the certainty of the evidence.Main ResultsThis update adds four new studies, bringing the total of included studies to eight and involving 3818 adult participants with no history of thromboembolic disease undergoing KA. Studies compared daily subcutaneous (sc) low-molecular-weight heparin (LMWH) versus control (five studies); oral rivaroxaban 10 mg versus placebo (one study); daily sc LMWH versus graduated compression stockings (GCS) (one study); and aspirin versus control (one study). The incidence of pulmonary embolism (PE) in all trials combined was low, with seven cases in 3818 participants.There were no deaths in any of the intervention or control groups. LMWH versus control When compared with control, LMWH probably results in little to no difference in the incidence of PE in patients undergoing KA (risk ratio (RR) 1.81, 95% confidence interval (CI) 0.49 to 6.65; 1820 participants; 3 studies; moderate-certainty evidence). LMWH showed no reduction of the incidence of symptomatic DVT (RR 0.61, 95% CI 0.18 to 2.03; 1848 participants; 4 studies; moderate-certainty evidence). LMWH may reduce the risk of asymptomatic DVT but the evidence is very uncertain (RR 0.14, 95% CI 0.03 to 0.61; 369 participants; 2 studies; very low-certainty evidence). There was no evidence of an increased risk of all adverse events combined (RR 1.85, 95% CI 0.95 to 3.59; 1978 participants; 5 studies; moderate-certainty evidence). No evidence of a clear effect on major bleeding (RR 0.98, 95% CI 0.06 to 15.72; 1451 participants; 1 study; moderate-certainty evidence), or minor bleeding was observed (RR 1.79, 95% CI 0.84 to 3.84; 1978 participants; 5 studies; moderate-certainty evidence). Rivaroxaban versus placebo One study with 234 participants compared oral rivaroxaban 10 mg versus placebo. No evidence of a clear impact on the risk of PE (no events in either group), symptomatic DVT (RR 0.16, 95% CI 0.02 to 1.29; moderate-certainty evidence); or asymptomatic DVT (RR 0.95, 95% CI 0.06 to 15.01; very low-certainty evidence) was detected. Only bleeding adverse events were reported. No major bleeds occurred in either group and there was no evidence of differences in minor bleeding between the groups (RR 0.63, 95% CI 0.18 to 2.19; moderate-certainty evidence). Aspirin versus control One study compared aspirin with control. No PE, DVT or asymptomatic events were detected in either group. Adverse events including pain and swelling were reported but it was not clear what groups these were in. No bleeds were reported. LMWH versus GCS One study with 1317 participants compared the use of LMWH versus GCS. There was no clear difference in the risk of PE (RR 1.00, 95% CI 0.14 to 7.05; low-certainty evidence). LMWH use did reduce the risk of DVT compared to people using GCS (RR 0.17, 95% CI 0.04 to 0.75; low-certainty evidence). No clear difference in effects was seen between the groups for asymptomatic DVT (RR 0.47, 95% CI 0.21 to 1.09; very low-certainty evidence); major bleeding (RR 3.01, 95% CI 0.61 to 14.88; moderate-certainty evidence) or minor bleeding (RR 1.16, 95% CI 0.64 to 2.08; moderate-certainty evidence). Levels of thromboembolic events were higher in the GCS group than in any other group. We downgraded the certainty of the evidence for imprecision resulting from overall small event numbers; risk of bias due to concerns about lack of blinding, and indirectness as we were uncertain about the direct clinical relevance of asymptomatic DVT detection.Authors' ConclusionsThere is a small risk that healthy adult patients undergoing KA will develop venous thromboembolism (PE or DVT). There is moderate- to low-certainty evidence of no benefit from the use of LMWH, aspirin or rivaroxaban in reducing this small risk of PE or symptomatic DVT. There is very low-certainty evidence that LMWH use may reduce the risk of asymptomatic DVT when compared to no treatment but it is uncertain how this directly relates to incidence of DVT or PE in healthy patients. No evidence of differences in adverse events (including major and minor bleeding) was seen, but data relating to this were limited due to low numbers of events in the studies reporting within the comparisons.Copyright © 2020 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.