• Turk J Med Sci · Nov 2020

    Review

    BMP and TGFß Use and Release in Bone Regeneration.

    • Zeynep Bal, Junichi Kushioka, Joe Kodama, Takashi Kaito, Hideki Yoshikawa, Petek Korkusuz, and Feza Korkusuz.
    • Department of Orthopaedic Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
    • Turk J Med Sci. 2020 Nov 3; 50 (SI-2): 1707-1722.

    AbstractA fracture that does not unite in nine months is defined as nonunion. Nonunion is common in fragmented fractures and large bone defects where vascularization is impaired. The distal third of the tibia, the scaphoid bone or the talus fractures are furthermore prone to nonunion. Open fractures and spinal fusion cases also need special monitoring for healing. Bone tissue regeneration can be attained by autografts, allografts, xenografts and synthetic materials, however their limited availability and the increased surgical time as well as the donor site morbidity of autograft use, and lower probability of success, increased costs and disease transmission and immunological reaction probability of allografts oblige us to find better solutions and new grafts to overcome the cons. A proper biomaterial for regeneration should be osteoinductive, osteoconductive, biocompatible and mechanically suitable. Cytokine therapy, where growth factors are introduced either exogenously or triggered endogenously, is one of the commonly used method in bone tissue engineering. Transforming growth factor β (TGFβ) superfamily, which can be divided structurally into two groups as bone morphogenetic proteins (BMPs), growth differentiation factors (GDFs) and TGFβ, activin, Nodal branch, Mullerian hormone, are known to be produced by osteoblasts and other bone cells and present already in bone matrix abundantly, to take roles in bone homeostasis. BMP family, as the biggest subfamily of TGFβ superfamily, is also reported to be the most effective growth factors in bone and development, which makes them one of the most popular cytokines used in bone regeneration. Complications depending on the excess use of growth factors, and pleiotropic functions of BMPs are however the main reasons of why they should be approached with care. In this review, the Smad dependent signaling pathways of TGFβ and BMP families and their relations and the applications in preclinical and clinical studies will be briefly summarized.This work is licensed under a Creative Commons Attribution 4.0 International License.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…