• Journal of neurotrauma · Dec 2020

    Sodium cromoglycate decreases sensorimotor impairment and hippocampal alterations induced by severe traumatic brain injury in rats.

    • Marysol Segovia-Oropeza, Cindy Santiago-Castañeda, Sandra Adela Orozco-Suárez, Luis Concha, and Luisa Rocha.
    • Department of Pharmacobiology, Center of Research and Advanced Studies, Mexico City, Mexico.
    • J. Neurotrauma. 2020 Dec 1; 37 (23): 2595-2603.

    AbstractSevere traumatic brain injury (TBI) results in significant functional disturbances in the hippocampus. Studies support that sodium cromoglycate (CG) induces neuroprotective effects. This study focused on investigating the effects of post-TBI subchronic administration of CG on hippocampal hyperexcitability and damage as well as on sensorimotor impairment in rats. In contrast to the control group (Sham+SS group), animals undergoing severe TBI (TBI+SS group) showed sensorimotor dysfunction over the experimental post-TBI period (day 2, 55%, p < 0.001; day 23, 39.5%, p < 0.001; day 30, 38.6%, p < 0.01). On day 30 post-TBI, TBI+SS group showed neuronal hyperexcitability (63.3%, p < 0.01). The hippocampus ipsilateral to the injury showed volume reduction (14.4%, p < 0.001) with a volume of damage of 0.15 ± 0.09 mm3. These changes were associated with neuronal loss in the dentate gyrus (ipsilateral, 33%, p < 0.05); hilus (ipsilateral, 77%, p < 0.001; contralateral, 51%, p < 0.001); Cornu Ammonis (CA)1 (ipsilateral, 40%, p < 0.01), and CA3 (ipsilateral, 52%, p < 0.001; contralateral, 34%, p < 0.01). Animals receiving subchronic treatment with CG (50 mg/kg, s.c. daily for 10 days) after TBI (TBI+CG group) displayed a sensorimotor dysfunction less evident than that of the TBI+SS group (p < 0.001). Their hippocampal excitability was similar to that of the Sham+SS group (p = 0.21). The TBI+CG group presented hippocampal volume reduction (12.7%, p = 0.94) and damage (0.10 ± 0.03 mm3, p > 0.99) similar to the TBI+SS group. However, their hippocampal neuronal preservation was similar to that of the Sham+SS group. These results indicate that CG represents an appropriate and novel pharmacological strategy to reduce the long-term sensorimotor impairment and hippocampal damage and hyperexcitability that result as consequences of severe TBI.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.