• Neuromodulation · Jan 2014

    Neurologist consistency in interpreting information provided by an interactive visualization software for deep brain stimulation postoperative programming assistance.

    • Srivatsan Pallavaram, Fenna T Phibbs, Christopher Tolleson, Thomas L Davis, John Fang, Peter Hedera, Rui Li, Tatsuki Koyama, Benoit M Dawant, and Pierre-François D'Haese.
    • Department of Electrical Engineering & Computer Science, Vanderbilt University, Nashville, TN, USA.
    • Neuromodulation. 2014 Jan 1; 17 (1): 11-5; discussion 15.

    IntroductionPostoperative programming in deep brain stimulation (DBS) therapy for movement disorders can be challenging and time consuming. Providing the neurologist with tools to visualize the electrode location relative to the patient's anatomy along with models of tissue activation and statistical data can therefore be very helpful. In this study, we evaluate the consistency between neurologists in interpreting and using such information provided by our DBS programming assistance software.MethodsFive neurologists experienced in DBS programming were each given a dataset of 29 leads implanted in 17 patients. For each patient, probabilistic maps of stimulation response, anatomical images, models of tissue activation volumes, and electrode positions were presented inside a software framework called CRAnialVault Explorer (CRAVE) developed in house. Consistency between neurologists in optimal contact selection using the software was measured.ResultsWith only the efficacy map, the average consistency among the five neurologists with respect to the mode and mean of their selections was 97% and 95%, respectively, while these numbers were 93% and 89%, respectively, when both efficacy and an adverse effect map were used simultaneously. Fleiss' kappa statistic also showed very strong agreement among the neurologists (0.87 when using one map and 0.72 when using two maps).ConclusionOur five neurologists demonstrated high consistency in interpreting information provided by the CRAVE interactive visualization software for DBS postoperative programming assistance. Three of our five neurologists had no prior experience with the software, which suggests that the software has a short learning curve and contact selection is not dependent on familiarity with the program tools.© 2013 Vanderbilt University.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…