• Turk J Med Sci · Dec 2020

    Antioxidative effects of uridine in a neonatal rat model of hyperoxic brain injury.

    • Nevin Al, Ayşen Çakir, Cansu Koç, Mehmet Cansev, and Tülin Alkan.
    • Department of Nursing, Istanbul Medipol University, Institute of Health Sciences, Pediatric Nursing Doctorate Program, Istanbul, Turkey
    • Turk J Med Sci. 2020 Dec 17; 50 (8): 2059-2066.

    Background/AimPremature birth is a major problem that results in an increased risk of mortality and morbidity. The management of such infants consists of supraphysiological oxygen therapy, which affects brain development due, in part, to the deterioration caused by reactive oxygen species (ROS). We showed previously that exogenously administered uridine provides neuroprotection in a neonatal rat model of hyperoxic brain injury. Hence, the aim of the present study was to investigate the effects of uridine on ROS in the same setting.Materials And MethodsHyperoxic brain injury was induced by subjecting a total of 53 six-day-old rat pups to 80% oxygen (the hyperoxia group) for a period of 48 h. The pups in the normoxia group continued breathing room air (21% oxygen). Normoxia + saline or hyperoxia + saline or hyperoxia + uridine 100 mg/kg or hyperoxia + uridine 300 mg/kg or hyperoxia + uridine 500 mg/kg was injected intraperitoneally (i. p.) 15 min prior to the hyperoxia procedure. The pups were decapitated and the brains were homogenized to analyze superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), myeloperoxidase (MPO), and malondialdehyde (MDA) enzymes as well as DJ-1 (protein deglycase DJ-1) — an oxidative stress-sensitive protein.ResultsHyperoxia-induced may cause overproduction of oxygen radicals and the oxidant/antioxidant balance may be disturbed in the brain. Brain MPO and MDA levels were significantly increased in saline-receiving pups exposed to hyperoxia. Brain SOD and GSH-Px levels were significantly decreased in saline-receiving pups exposed to hyperoxia. Our results showed that uridine administration prevented the hyperoxia-induced decrease in SOD and GSH-Px while counteracting the hyperoxia-induced increase in MPO and MDA in a dose-dependent manner. Uridine also increased the DJ-1 levels in brains of rat pups subjected to hyperoxia.ConclusionThese data suggest that uridine exhibits antioxidative properties which may mediate the protective effects of uridine in a neonatal rat model of hyperoxic brain injury.This work is licensed under a Creative Commons Attribution 4.0 International License.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.