• Neuromodulation · Apr 2014

    c-FOS expression after hippocampal deep brain stimulation in normal rats.

    • Jose C da Silva, Fulvio A Scorza, Mariana B Nejm, Esper A Cavalheiro, and Arthur Cukiert.
    • Neurologia Experimental, Universidade Federal de Sao Paulo, Sao Paulo, Brazil.
    • Neuromodulation. 2014 Apr 1; 17 (3): 213-7; discussion 216-7.

    ObjectivesWe studied the effects of Hip-deep brain stimulation (DBS) on the expression of the inducible transcription factor c-FOS in the brain of normal rats.Materials And MethodsTen Wistar rats were anesthetized, and nine were implanted with epidural and hippocampal electrodes for brain activity recording; one animal was used as sham. Bipolar stimulating electrodes were implanted in the left hippocampus. Three animals were used as control (implanted but not stimulated), one as sham (not implanted, not stimulated), and six as the study group. Stimulation was carried out using square wave pulses with 0.8V, 300 μsec, and 130 Hz (∼25μC/cm2) on the left hippocampus through the implanted bipolar hippocampal lead. Three animals were submitted to a one-hour and three to a six-hour stimulation session. Immunohistochemistry was employed to visualize c-FOS distribution in the rat's brain. The presence of seizures and electrocorticographic findings also were observed.ResultsIn animals submitted to both one-hour or six-hour unilateral hippocampal stimulation sessions, there was a significant bilateral overexpression of c-FOS in the hippocampus proper, dentate gyrus, and hylus. In the CA1 and CA3 regions, although activation was bilateral, c-FOS hyperexpression prevailed at the stimulated side over time; this was not true for the hilar and dentate gyrus regions where a more symmetric activation occurred over time. A significant c-FOS activation occurred after one hour of Hip-DBS in the ipsilateral amygdala; there was no contralateral amygdala activation, and by six hours, no amygdala activation was noted. No c-FOS activation was noted in other brain areas.DiscussionOur data showed that unilateral Hip-DBS was able to cause widespread and persistent bilateral activation of the normal rat limbic system, although in some, nuclei activation prevailed over the stimulated side. Cortical activation outside the limbic system was not noted. Our data represent a first approach to study the mechanistic paradigm involved in Hip-DBS.© 2013 International Neuromodulation Society.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.