• Journal of neurosurgery · Dec 2020

    Neuroendovascular-specific engineering modifications to the CorPath GRX Robotic System.

    • Gavin W Britz, Sandip S Panesar, Peter Falb, Johnny Tomas, Virendra Desai, and Alan Lumsden.
    • 1Department of Neurological Surgery and Neurological Institute, and.
    • J. Neurosurg. 2020 Dec 1; 133 (6): 183018361830-1836.

    ObjectiveThe aim of this study was to evaluate new, neuroendovascular-specific engineering and software modifications to the CorPath GRX Robotic System for their ability to support safer and more effective cranial neurovascular interventions in a preclinical model.MethodsActive device fixation (ADF) control software, permitting automated manipulation of the guidewire relative to the microcatheter, and a modified drive cassette suitable for neuroendovascular instruments were the respective software and hardware modifications to the current CorPath GRX robot, which was cleared by the FDA for percutaneous coronary and peripheral vascular intervention. The authors then trialed the modified system in a live porcine model with simulated neuroendovascular pathology. Femoral access through the aortic arch to the common carotid artery was accomplished manually (without robotic assistance), and the remaining endovascular procedures were performed with robotic assistance. The system was tested for the enhanced ability to navigate and manipulate neurovascular-specific guidewires and microcatheters. The authors specifically evaluated the movement of the wire forward and backward during the advancement of the microcatheter.ResultsNavigation of the rete mirabile and an induced aneurysm within the common carotid artery were successful. The active device fixation feature enabled independent advancement and retraction of the guidewire and working device relative to the microcatheter. When ADF was inactive, the mean forward motion of the guidewire was 5 mm and backward motion was 0 mm. When ADF was active, the mean forward motion of the guidewire was 0 mm and backward motion was 1.5 mm. The modifications made to the robotic cassette enabled the system to successfully manipulate the microcatheter and guidewire safely and in a manner more suited to neuroendovascular procedures than before. There were no occurrences of dissection, extravasation, or thrombosis.ConclusionsThe robotic system was originally designed to navigate and manipulate devices for cardiac and peripheral vascular intervention. The current modifications described here improved its utility for the more delicate and tortuous neurovascular environment. This will set the stage for the development of a neurovascular-specific robot.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.