-
Cell. Physiol. Biochem. · Jan 2018
Microarray Analysis of Differentially Expressed Profiles of Circular RNAs in a Mouse Model of Intestinal Ischemia/Reperfusion Injury with and Without Ischemic Postconditioning.
- Dongcheng Feng, Zhenlu Li, Guangzhi Wang, Jihong Yao, Yang Li, Wasim Qasim, Yongfu Zhao, and Xiaofeng Tian.
- Department of General Surgery, The Second Hospital of Dalian Medical University, Dalian, China.
- Cell. Physiol. Biochem. 2018 Jan 1; 48 (4): 1579-1594.
Background/AimsIschemic postconditioning (iPoC) represents a promising strategy to mitigate ischemia/reperfusion (I/R) injury of the intestine, yet the mechanisms of this treatment remain to be elucidated. Circular RNAs (circRNAs), a novel class of endogenous non-coding RNAs, have recently been recognized as important regulators of gene expression and pathological processes. Here, we aimed to investigate the expression patterns of circRNAs after intestinal I/R with and without iPoC and, furthermore, to explore the potential mechanisms of iPoC in relation to the differentially expressed circRNAs.MethodsThe global circRNA and mRNA expression profiles in mouse intestinal mucosa were initially screened by microarray (n = 3 per group) and quantitative real-time PCR was used to validate the expression pattern of circRNAs and mRNAs. Bioinformatics analysis including Gene ontology, KEGG pathway analysis, microRNA binding sites identification and circRNA-miRNA-mRNA network construction were utilized for in-depth mechanism exploration.ResultsThere were 4 up- and 58 downregulated circRNAs as well as 322 up- and 199 downregulated mRNAs in the intestinal I/R group compared with the sham group, whereas compared with I/R, iPoC treatment significantly upregulated 12 circRNAs and 129 mRNAs and downregulated 21 circRNAs and 174 mRNAs. The expression levels of a randomly selected set of 6 circRNAs and 5 mRNAs were successfully validated by qRT-PCR. Through a systematic comparison of the direction of circRNA expression changes in all groups, we identified two circRNAs, circRNA_012412 and circRNA_016863, that may be closely associated with the protective mechanisms of iPoC. Finally, four possible circRNA_012412/circRNA_016863-miRNA-mRNA pathways were predicted, which may play important roles in endogenous protective signaling in iPoC.ConclusionsThis study was the first to comprehensively delineate the expression profiles of circRNAs in a mouse model of intestinal I/R and iPoC and provides novel clues for understanding the mechanisms of iPoC against intestinal I/R injury.© 2018 The Author(s). Published by S. Karger AG, Basel.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.