-
Anesthesia and analgesia · Jul 2020
New Method of Destroying Waste Anesthetic Gases Using Gas-Phase Photochemistry.
- Verena Rauchenwald, Mark D Rollins, Susan M Ryan, Alex Voronov, John R Feiner, Karolis Šarka, and Matthew S Johnson.
- From the Department of Chemistry, University of Copenhagen, Copenhagen, Denmark.
- Anesth. Analg. 2020 Jul 1; 131 (1): 288-297.
BackgroundThe inhalation anesthetics are potent greenhouse gases. To reduce the global environmental impact of the health care sector, technologies are sought to limit the release of waste anesthetic gas into the atmosphere.MethodsUsing a photochemical exhaust gas destruction system, removal efficiencies for nitrous oxide, desflurane, and sevoflurane were measured at various inlet concentrations (25% and 50%; 1.5%, 3.0%, and 6.0%; and 0.5%, 1.0%, and 2.0%, respectively) with flow rates ranging from 0.25 to 2.0 L/min. To evaluate the economic competitiveness of the anesthetic waste gas destruction system, its price per ton of carbon dioxide equivalent was calculated and compared to other greenhouse gas abatement technologies and current market prices.ResultsAll inhaled anesthetics evaluated demonstrate enhanced removal efficiencies with decreasing flow rates (P < .0001). Depending on the anesthetic and its concentration, the photochemical exhaust gas destruction system exhibits a constant first-order removal rate, k. However, there was not a simple relation between the removal rate k and the species concentration. The costs for removing a ton of carbon dioxide equivalents are <$0.005 for desflurane, <$0.114 for sevoflurane, and <$49 for nitrous oxide.ConclusionsBased on this prototype study, destroying sevoflurane and desflurane with this photochemical anesthetic waste gas destruction system design is efficient and cost-effective. This is likely also true for other halogenated inhalational anesthetics such as isoflurane. Due to differing chemistry of nitrous oxide, modifications of this prototype photochemical reactor system are necessary to improve its removal efficiency for this gas.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.