• J Clin Monit Comput · Feb 2020

    Randomized Controlled Trial

    Hypoventilation patterns during bronchoscopic sedation and their clinical relevance based on capnographic and respiratory impedance analysis.

    • Yu-Lun Lo, Hau-Tieng Wu, Yu-Ting Lin, Han-Pin Kuo, and Ting-Yu Lin.
    • Department of Thoracic Medicine, Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, 199 Tun-Hwa N. Rd., Taipei, Taiwan.
    • J Clin Monit Comput. 2020 Feb 1; 34 (1): 171-179.

    AbstractCapnography involves the measurement of end-tidal CO2 (EtCO2) values to detect hypoventilation in patients undergoing sedation. In a previous study, we reported that initiating a flexible bronchoscopy (FB) examination only after detecting signs of hypoventilation could reduce the risk of hypoxemia without compromising the tolerance of the patient for this type of intervention. We hypothesize that hypoventilation status could be determined with greater precision by combining thoracic impedance-based respiratory signals, RESP, and EtCO2 signals obtained from a nasal-oral cannula. Retrospective analysis was conducted on RESP and EtCO2 waveforms obtained from patients during the induction of sedation using propofol for bronchoscopic examination in a previous study. EtCO2 waveforms associated with hypoventilation were then compared with RESP patterns, patient variables, and sedation outcomes. Signals suitable for analysis were obtained from 44 subjects, 42 of whom presented indications of hypoventilation, as determined by EtCO2 waveforms. Two subtypes of hypoventilation were identified by RESP: central-predominant (n = 22, flat line RESP pattern) and non-central-predominant (n = 20, RESP pattern indicative of respiratory effort with upper airway collapse). Compared to cases of non-central-predominant hypoventilation, those presenting central-predominant hypoventilation during induction were associated with a lower propofol dose (40.2 ± 18.3 vs. 60.8 ± 26.1 mg, p = 0.009), a lower effect site concentration of propofol (2.02 ± 0.33 vs. 2.38 ± 0.44 µg/ml, p = 0.01), more rapid induction (146.1 ± 105.5 vs. 260.9 ± 156.2 s, p = 0.01), and lower total propofol dosage (96.6 ± 41.7 vs. 130.6 ± 53.4 mg, p = 0.04). Hypoventilation status (as revealed by EtCO2 levels) could be further classified by RESP into central-predominant or non-central-predominant types. It appears that patients with central-predominant hypoventilation are more sensitive to propofol during the induction of sedation. RESP values could be used to tailor sedation management specifically to individual patients.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.