• J Pain · Jan 2021

    NMDA receptor modulates spinal iron accumulation via activating DMT1(-)IRE in remifentanil-induced hyperalgesia.

    • Ruichen Shu, Linlin Zhang, Hao Zhang, Yuan Li, Chunyan Wang, Lin Su, Hongwei Zhao, and Guolin Wang.
    • Department of Anesthesiology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China; National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China.
    • J Pain. 2021 Jan 1; 22 (1): 32-47.

    AbstractN-methyl-D-aspartate (NMDA) receptor activation is known to be critical in remifentanil-induced hyperalgesia. Evidence indicates that iron accumulation participates in NMDA neurotoxicity. This study aims to investigate the role of iron accumulation in remifentanil-induced hyperalgesia. Remifentanil was delivered intravenously in rats to induce hyperalgesia. The NMDA receptor antagonist MK-801 was intrathecally administrated. The levels of divalent metal transporter 1 without iron-responsive element [DMT1(-)IRE] and iron were detected. Behavior testing was performed in DMT1(-)IRE knockdown rats and rats treated with iron chelator DFO. Meanwhile, the spinal dorsal horn neurons were cultured and transfected with DMT1(-)IRE siRNA, and then respectively incubated with remifentanil and MK-801. The levels of intracellular Ca2+ and iron were assessed by fluorescence imaging. Our data revealed that spinal DMT1(-)IRE and iron content significantly increased in remifentanil-treated rats, and MK-801 inhibited the enhancements. DMT1(-)IRE knockdown and DFO prevented against remifentanil-induced hyperalgesia. Notably, the levels of Ca2+ and iron increased in remifentanil-incubated neurons, and these growths can be blocked by MK-801. DMT1(-)IRE knockdown attenuated iron accumulation but did not influence Ca2+ influx. This study suggests that DMT1(-)IRE-mediated iron accumulation is likely to be the downstream event following NMDA receptor activation and Ca2+ influx, contributing to remifentanil-induced hyperalgesia. PERSPECTIVE: Remifentanil-induced hyperalgesia is common even when used within clinical accepted doses. This study presents that aberrant iron accumulation is involved in the development of remifentanil-induced hyperalgesia in vivo and in vitro. Iron chelation may be a potential therapeutic strategy for the prevention of hyperalgesia in populations at high risk.Copyright © 2020 United States Association for the Study of Pain, Inc. Published by Elsevier Inc. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…