• Neuromodulation · Jan 2002

    Neurorehabilitation of upper extremities in humans with sensory-motor impairment.

    • Dejan B Popovic, Mirjana B Popovic, and Thomas Sinkjaer.
    • Center for Sensory-Motor Interaction, Aalborg University, Denmark and Institute for Medical Research, Belgrade, Yugoslavia.
    • Neuromodulation. 2002 Jan 1;5(1):54-66.

    AbstractToday most clinical investigators agree that the common denominator for successful therapy in subjects after central nervous system (CNS) lesions is to induce concentrated, repetitive practice of the more affected limb as soon as possible after the onset of impairment. This paper reviews representative methods of neurorehabilitation such as constraining the less affected arm and using a robot to facilitate movement of the affected arm, and focuses on functional electrotherapy promoting the movement recovery. The functional electrical therapy (FET) encompasses three elements: 1) control of movements that are compromised because of the impairment, 2) enhanced exercise of paralyzed extremities, and 3) augmented activity of afferent neural pathway. Liberson et al. (1) first reported an important result of the FET; they applied a peroneal stimulator to enhance functionally essential ankle dorsiflexion during the swing phase of walking. Merletti et al. (2) described a similar electrotherapeutic effect for upper extremities; they applied a two-channel electronic stimulator and surface electrodes to augment elbow extension and finger extension during different reach and grasp activities. Both electrotherapies resulted in immediate and carry-over effects caused by systematic application of FET. In studies with subjects after a spinal cord lesion at the cervical level (chronic tetraplegia) (3-5) or stroke (6), it was shown that FET improves grasping and reaching by using the following outcome measures: the Upper Extremity Function Test (UEFT), coordination between elbow and shoulder movement, and the Functional Independence Measure (FIM). Externally applied electrical stimuli provided a strong central sensory input which could be responsible for the changes in the organization of impaired sensory-motor mechanisms. FET resulted in stronger muscles that were stimulated directly, as well as exercising other muscles. The ability to move paralyzed extremities also provided awareness (proprioception and visual feedback) of enhanced functional ability as being very beneficial for the recovery. FET contributed to the increased range of movement in the affected joints, increased speed of joint rotations, reduced spasticity, and improved functioning measured by the UEFT, the FIM and the Quadriplegia Index of Function (QIF).

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,624,503 articles already indexed!

We guarantee your privacy. Your email address will not be shared.