-
- Ralph Buchert, Carsten Buhmann, Ivayla Apostolova, Philipp T Meyer, and Jürgen Gallinat.
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf; Department of Neurology, University Medical Center Hamburg-Eppendorf; Department of Nuclear Medicine, Medical Center-University of Freiburg; Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf.
- Dtsch Arztebl Int. 2019 Nov 1; 116 (44): 747-754.
BackgroundParkinsonian syndromes are classified by etiology mainly on clinical grounds, that is, on the basis of the clinical manifestations and with the aid of conventional ancillary studies. In most cases, the clinical diagnosis is clear. In up to 30% of cases, however, the etiological classification remains uncertain after completion of the basic clinical diagnostic evaluation, and additional investigation with nuclear imaging may be indicated. In particular, cerebral single-photon emission computed tomography (SPECT) with dopamine transporter (DAT) ligands may be helpful. DAT-SPECT can be used to demonstrate or rule out nigrostriatal degeneration and thereby differentiate neurodegenerative parkinsonian syndromes from symptomatic parkinsonian syndromes and other differential diagnoses. Positron emission tomography (PET) with the glucose analogue [18F]fluorodeoxyglucose (FDG) can be used to identify disease-specific patterns of neuronal dysfunction/degeneration in order to differentiate the various neurodegenerative parkinsonian syndromes from one another.MethodsIn this review, we summarize the current state of the evidence on DAT-SPECT and FDG-PET for the indications mentioned above on the basis of a selective review of the literature.ResultsDAT-SPECT has been adequately validated as an in vivo marker for nigrostriatal degeneration. Studies using the clinical diagnosis of a movement disorders specialist over the course of the disease as a reference have shown that DAT- SPECT is 78-100% sensitive (median, 93%) and 70-100% specific (median, 89%) for the differentiation of neurodegenerative parkinsonian syndromes from symptomatic parkinsonism and other differential diagnoses in clinically unclear cases. DAT- SPECT scanning led to a change of diagnosis in 27-56% of patients (median, 43%) and to a change of treatment in 33-72% (median, 43%). FDG-PET enables the differentiation of atypical neurodegenerative parkinsonian syndromes from the idiopathic parkinsonian syndrome (i.e., Parkinson's disease proper) with high sensitivity and specificity (both approximately 90%), when the clinical diagnosis by a movement disorders specialist over the course of the disease is used as a reference.ConclusionDAT-SPECT has been well documented to be highly diagnostically accurate and to have a relevant influence on the diagnosis and treatment of patients with clinically uncertain parkinsonian or tremor syndrome. It has not yet been shown to improve patient-relevant endpoints such as mortality, morbidity, and health-related quality of life; proof of this will probably have to await the introduction of neuroprotective treatments. The current evidence for the high differential diagnostic accuracy of FDG-PET in neurodegenerative parkinsonian syndromes needs to be reinforced by prospective studies with neuropathological verification of the diagnosis.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.