• Br J Anaesth · Aug 2020

    Comment Review

    Theory and practical use of Bayesian methods in interpreting clinical trial data: a narrative review.

    • David Ferreira, Mael Barthoulot, Julien Pottecher, Klaus D Torp, Pierre Diemunsch, and Nicolas Meyer.
    • Anesthesiology and Intensive Care Department, CHU de Besançon, Besançon, France; Université de Strasbourg, iCUBE, UMR7357, Illkirch Cedex, France. Electronic address: dferreira@chu-besancon.fr.
    • Br J Anaesth. 2020 Aug 1; 125 (2): 201-207.

    AbstractThe critical reading of scientific articles is necessary for the daily practice of evidence-based medicine. Rigorous comprehension of statistical methods is essential, as reflected by the extensive use of statistics in the biomedical literature. In contrast to the customary frequentist approach, which never uses or gives the probability of a hypothesis, Bayesian theory uses probabilities for both hypotheses and data. This statistical approach is increasingly used for analyses of clinical trial data and for applied machine learning. The aim of this review is to compare general Bayesian concepts with frequentist methods to facilitate a better understanding of Bayesian theory for readers who are not familiar with this approach. The review is intended to be used in combination with a checklist we have devised for reading reports analysed by Bayesian methods. We compare and contrast the different approaches of Bayesian vs frequentist statistical methods by considering data from a clinical trial that lends itself to this comparative approach.Copyright © 2020 British Journal of Anaesthesia. Published by Elsevier Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.