-
Molecular neurobiology · Jan 2018
Heterogeneity in Synaptogenic Profile of Astrocytes from Different Brain Regions.
- Andrea Schmidt Buosi, Isadora Matias, Ana Paula Bergamo Araujo, Carolina Batista, and Flávia Carvalho Alcantara Gomes.
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, 21941-902, Brazil.
- Mol. Neurobiol. 2018 Jan 1; 55 (1): 751-762.
AbstractAstrocytes, the most abundant glial cells in the central nervous system (CNS), comprise a heterogeneous population of cells. However, how this heterogeneity impacts their function within brain homeostasis and response to injury and disease is still largely unknown. Recently, astrocytes have been recognized as important regulators of synapse formation and maturation. Here, we analyzed the synaptogenic property of astrocytes from different regions of the CNS. The effect of conditioned medium derived from astrocytes (astrocyte-conditioned medium (ACM)) from cerebral cortex, hippocampus, midbrain and cerebellum, in synapse formation, was evaluated. Synapse formation was analyzed by quantification of pre- and postsynaptic proteins, synaptophysin, and postsynaptic density protein 95 (PSD-95). ACM from the four regions increased significantly the number of synaptophysin/PSD-95 puncta on neurons from the same and different brain regions. Differences on astrocytic synaptogenic potential between the regions were observed according to ACM protein concentration. Thus, cerebellar astrocytes have higher synaptogenic effect when ACM is less concentrated. Also, heterotypical co-culture assays revealed that neurons from cerebral cortex and midbrain equally respond to ACM, indicating that differences in synapse effect are unlike to be neuron-autonomous. The expression profile of the synaptogenic molecules secreted by astrocytes from distinct brain regions was analyzed by qPCR. Gene expression of glypicans 4 and 6, hevin, and secreted protein-acidic and rich in cysteine (SPARC) greatly varies between astrocytes from different brain regions. Furthermore, in vivo analysis of hevin protein confirmed that variance. These findings highlight the heterogeneity of astrocytes and suggest that their synaptogenic potential may be different in each brain region, mainly due to distinct gene expression profiles.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.