-
- Maxwell Boakye, Johnny Morehouse, Jay Ethridge, Darlene A Burke, Nicolas K Khattar, Chitra Kumar, Neda Manouchehri, Femke Streijger, Robert Reed, MagnusonDavid S KDSKDepartment of Neurological Surgery and Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA., Leslie Sherwood, Brian K Kwon, and Dena R Howland.
- Department of Neurological Surgery and Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA.
- J. Neurotrauma. 2020 Nov 1; 37 (21): 227722912277-2291.
AbstractYucatan miniature pigs (YMPs) are similar to humans in spinal cord size as well as physiological and neuroanatomical features, making them a useful model for human spinal cord injury. However, little is known regarding pig gait kinematics, especially on a treadmill. In this study, 12 healthy YMPs were assessed during bipedal and/or quadrupedal stepping on a treadmill at six speeds (1.0, 1.5, 2.0, 2.5, 3.0, and 3.5 km/h). Kinematic parameters, including limb coordination and proximal and distal limb angles, were measured. Findings indicate that YMPs use a lateral sequence footfall pattern across all speeds. Stride and stance durations decreased with increasing speed whereas swing duration showed no significant change. Across all speeds assessed, no significant differences were noted between hindlimb stepping parameters for bipedal or quadrupedal gait with the exception of distal limb angular kinematics. Specifically, significant differences were observed between locomotor tasks during maximum flexion (quadrupedal bipedal), total excursion (bipedal quadrupedal), and the phase relationship between the timing of maximum extension between the right and left hindlimbs (bipedal quadrupedal). Speed also impacted maximum flexion and right-left phase relationships given that significant differences were found between the fastest speed (3.5 km/h) relative to each of the other speeds. This study establishes a methodology for bipedal and quadrupedal treadmill-based kinematic testing in healthy YMPs. The treadmill approach used was effective in recruiting primarily the spinal circuitry responsible for the basic stepping patterns as has been shown in cats. We recommend 2.5 km/h (0.7 m/sec) as a target walking gait for pre-clinical studies using YMPs, which is similar to that used in cats.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.