• Am. J. Obstet. Gynecol. · Apr 2016

    Repeated isoflurane exposure and neuroapoptosis in the midgestation fetal sheep brain.

    • Olutoyin A Olutoye, Fariha Sheikh, Irving J Zamora, Ling Yu, Adesola C Akinkuotu, Adekunle M Adesina, and Oluyinka O Olutoye.
    • Department of Anesthesiology, Texas Children's Hospital, Houston, TX; Department of Pediatrics, Texas Children's Hospital, Houston, TX; Baylor College of Medicine, Texas Children's Hospital, Houston, TX; Texas Children's Fetal Center, Texas Children's Hospital, Houston, TX. Electronic address: oao@bcm.edu.
    • Am. J. Obstet. Gynecol. 2016 Apr 1; 214 (4): 542.e1-542.e8.

    BackgroundAdvances in surgery and technology have resulted in increased in-utero procedures. However, the effect of anesthesia on the fetal brain is not fully known. The inhalational anesthetic agent, isoflurane, other gamma amino butyric acid agonists (benzodiazepines, barbiturates, propofol, other inhalation anesthetics), and N-methyl D aspartate antagonists, eg, ketamine, have been shown to induce neuroapoptosis. The ovine model has been used extensively to study maternal-fetal physiologic interactions and to investigate different surgical interventions on the fetus.ObjectiveThe purpose of this study was to determine effects of different doses and duration of isoflurane on neuroapoptosis in midgestation fetal sheep. We hypothesized that repeated anesthetic exposure and high concentrations of isoflurane would result in increased neuroapoptosis.Study DesignTime-dated, pregnant sheep at 70 days gestation (term 145 days) received either isoflurane 2% × 1 hour, 4% × 3 hours, or 2% × 1 hour every other day for 3 exposures (repeated exposure group). Euthanasia occurred following anesthetic exposure and fetal brains were processed. Neuroapoptosis was detected by immunohistochemistry using anticaspase-3 antibodies. Fetuses unexposed to anesthesia served as controls. Another midgestation group with repeated 2% isoflurane exposure was examined at day 130 (long-term group) and neuronal cell density compared to age-matched controls. Representative sections of the brain were analyzed using Aperio Digital imaging (Leica Microsystems Inc, Buffalo Grove, IL). Data, reported by number of neurons per cubic millimeter of brain tissue are presented as means and SEM. Data were analyzed using the Mann-Whitney U and Kruskal-Wallis tests as appropriate.ResultsA total of 34 fetuses were studied. There was no significant difference in neuroapoptosis observed in fetuses exposed to 2% isoflurane for 1 hour or 4% isoflurane for 3 hours. Increased neuroapoptosis was observed in the frontal cortex following repeated 2% isoflurane exposure compared to controls (1.57 ± 0.22 × 10(6)/mm(3) vs 1.01 ± 0.44 × 10(6)/mm(3), P = .02). Fetuses at 70 days gestation with repeated exposure demonstrated decreased frontal cortex neurons at day 130 when compared to age-matched controls (2.42 ± 0.3 × 10(5)/mm(3) vs 7.32 ± 0.4 × 10(5)/mm(3), P = .02). No significant difference in neuroapoptosis was observed between the repeated exposure group and controls in the hippocampus, cerebellum, or basal ganglia.ConclusionRepeated isoflurane exposure in midgestation sheep resulted in increased frontal cortex neuroapoptosis. This persisted into late gestation as decreased neuronal cell density. While animal studies should be extrapolated to human beings with caution, our findings suggest that the number of anesthetic/sedative exposures should be considered when contemplating the risks and benefits of fetal intervention as certain fetal therapies may need to be repeated.Copyright © 2016 Elsevier Inc. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.