• Neuromodulation · Jul 2005

    A preliminary feasibility study of different implantable pulse generators technologies for diaphragm pacing system.

    • Gregoire Cosendai, Chloe de Balthasar, Anthony R Ignagni, Raymond P Onders, Kerry Bradley, Kate Purnell, J Thomas Mortimer, Ross Davis, Yitzhak Zilberman, and Joe Schulman.
    • Alfred E. Mann Foundation for Scientific Research, Lausanne, Switzerland; Alfred Mann Foundation for Scientific Research, Santa Clarita, California, USA; Synapse Biomedical Inc., Oberlin, Ohio, USA; CASE Medical School, Director of Minimally Invasive Surgery, University Hospitals of Cleveland, Cleveland, Ohio, USA; Advanced Bionics Corp. Valencia, California, USA; Independent Mechanical Engineering Consultant; Biomedical Engineering Department, Case Western Reserve University, Cleveland, Ohio, USA; Bioness, Inc., Santa Clarita, California, USA.
    • Neuromodulation. 2005 Jul 1;8(3):203-11.

    AbstractDiaphragm pacing stimulation (DPS) for ventilator-dependent patients provides several advantages over conventional techniques such as phrenic nerve pacing or mechanical ventilator support. To date, the only existing system for DPS uses lead electrodes, percutaneously attached to an external pulse generator (PG). However, for a widespread use of this technique it would be more appropriate to eliminate the need for percutaneous wire and use a totally implantable system. The aim of this study was to determine if it were feasible to replace the external PG by an implantable system. We present here the results of a preliminary study of two different PG, currently used in other electrical stimulation (ES) clinical applications, which could be used as implantable DPS systems. One radio-frequency-powered PG, one rechargeable battery-powered PG, and the current external PG were tested. Each was attached to the externalized part of the wires, connected to the diaphragm and tidal volume (TV) was measured in one ventilator-dependent patient who has been using the current percutaneous stimulator for 3 years. Results indicated that both implantable PGs could achieve equivalent ventilatory requirements to the current external stimulator. No significant differences were observed between the three PG systems when stimulating the electrodes as used in the patient's own chronically attached PG system. We found that TV increased with increases in charge and frequency as expected when stimulating the patient's electrodes individually and in combination with each PG system. These results are a significant step toward developing a totally implantable DPS system for the ventilator-dependant patients. Further clinical tests to demonstrate the safety and efficacy of a fully implanted DPS system are warranted.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.