-
- Juan P Bouchacourt, Juan Riva, and Juan C Grignola.
- Department of Anesthesia, School of Medicine, Hospital de Clínicas, Universidad de la República, Montevideo, Uruguay.
- BMC Anesthesiol. 2017 Mar 3; 17 (1): 35.
BackgroundPulse pressure (PPV) and stroke volume (SVV) variations may not be reliable in the setting of pulmonary hypertension and/or right ventricular (RV) failure. We hypothesized that RV afterload increase attenuates SVV and PPV during hypovolemia in a rabbit model of pulmonary embolism (PE) secondary to RV dysfunction.MethodsSeven anesthetized and mechanically ventilated rabbits were studied during four experimental conditions: normovolemia, blood withdrawal, pulmonary embolism and fluid loading of a colloidal solution. Central venous, RV and left ventricular (LV) pressures, and infra-diaphragmatic aortic blood flow (AoF) and pressure were measured. SV was estimated by the integral of systolic AoF. We analyzed RV and LV function through stroke work output curves. PPV and SVV were obtained by the variation of beat-to-beat PP and SV, respectively. We assessed RV and LV diastolic and systolic function by the time rate of relaxation (tau) and the ratio of the first derivative of ventricular pressure and the highest isovolumic developed pressure (dP/dt/DP), respectively. The vasomotor tone was estimated by the dynamic arterial elastance (Eadyn = PPV/SVV).ResultsPPV and SVV increased significantly during hemorrhage and returned to baseline values after PE which was associated to biventricular right-downward of the stroke work curves and a decrease of AoF and SV (P < 0.05). RV systo-diastolic function and LV systolic function were impaired. All the animals were nonresponders after volume expansion. Eadyn did not show any significant change during the different experimental conditions.ConclusionsThe dynamic preload indicators (SVV and PPV) were significantly reduced after a normotensive PE in hypovolemic animals, mainly by the systo-diastolic dysfunction of the RV associated with LV systolic impairment, which makes the animals nonresponsive to volume loading. This normalization of dynamic preload indices may prevent the detrimental consequence of fluid loading.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.