-
- Pietro Zeppa, Luca Neitzert, Marco Mammi, Matteo Monticelli, Roberto Altieri, Margherita Castaldo, Fabio Cofano, Alda Borrè, Francesco Zenga, Antonio Melcarne, and Diego Garbossa.
- Dipartimento di Neuroscienze, Università degli Studi di Torino, Turin, Italy.
- Neurosurgery. 2020 Nov 16; 87 (6): E672-E679.
BackgroundGliomas are the most common malignant primary brain tumors. Assessment of the tumor volume represents a crucial point in preoperative and postoperative evaluation.ObjectiveTo compare pre- and postoperative tumor volumes obtained with an automated, semi-automatic, and manual segmentation tool. Mean processing time of each segmentation techniques was measured.MethodsManual segmentation was performed on preoperative and postoperative magnetic resonance images with the open-source software Horos (Horos Project). "SmartBrush," a tool of the IPlan Cranial software (Brainlab, Feldkirchen, Germany), was used to carry out the semi-automatic segmentation. The open-source BraTumIA software (NeuroImaging Tools and Resources Collaboratory) was employed for the automated segmentation. Pearson correlation coefficient was used to assess volumetric comparison. Subsequently deviation/range and average discrepancy were determined. The Wilcoxon signed-rank test was used to assess statistical significance.ResultsA total of 58 patients with a newly diagnosed high-grade glioma were enrolled. The comparison of the volumes calculated with Horos and IPlan showed a strong agreement both on preoperative and postoperative images (respectively: "enhancing" ρ = 0.99-0.78, "fluid-attenuated inversion recovery" ρ = 0.97-0.92, and "total tumor volume" ρ = 0.98-0.95). Agreement between BraTumIA and the other 2 techniques appeared to be strong for preoperative images, but showed a higher disagreement on postoperative images. Mean time expenditure for tumor segmentation was 27 min with manual segmentation, 17 min with semi-automated, and 8 min with automated software.ConclusionThe considered segmentation tools showed high agreement in preoperative volumetric assessment. Both manual and semi-automated software appear adequate for the postoperative quantification of residual volume. The evaluated automated software is not yet reliable. Automated software considerably reduces the time expenditure.Copyright © 2020 by the Congress of Neurological Surgeons.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.