• Ann. Intern. Med. · Sep 2020

    Analysis of Response Data for Assessing Treatment Effects in Comparative Clinical Studies.

    • Bo Huang, Lu Tian, Zachary R McCaw, Xiaodong Luo, Enayet Talukder, Mace Rothenberg, Wanling Xie, Toni K Choueiri, Dae Hyun Kim, and Lee-Jen Wei.
    • Pfizer, Groton, Connecticut (B.H., E.T.).
    • Ann. Intern. Med. 2020 Sep 1; 173 (5): 368-374.

    AbstractIn comparative studies, treatment effect is often assessed using a binary outcome that indicates response to the therapy. Commonly used summary measures for response include the cumulative and current response rates at a specific time point. The current response rate is sometimes called the probability of being in response (PBIR), which regards a patient as a responder only if they have achieved and remain in response at present. The methods used in practice for estimating these rates, however, may not be appropriate. Moreover, whereas an effective treatment is expected to achieve a rapid and sustained response, the response at a fixed time point does not provide information about the duration of response (DOR). As an alternative, a curve constructed from the current response rates over the entire study period may be considered, which can be used for visualizing how rapidly patients responded to therapy and how long responses were sustained. The area under the PBIR curve is the mean DOR. This connection between response and DOR makes this curve attractive for assessing the treatment effect. In contrast to the conventional method for analyzing the DOR data, which uses responders only, the above procedure includes all patients in the study. Although discussed extensively in the statistical literature, estimation of the current response rate curve has garnered little attention in the medical literature. This article illustrates how to construct and analyze such a curve using data from a recent study for treating renal cell carcinoma. Clinical trialists are encouraged to consider this robust and clinically interpretable procedure as an additional tool for evaluating treatment effects in clinical studies.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…