• Environment international · Nov 2018

    The Australian Child Health and Air Pollution Study (ACHAPS): A national population-based cross-sectional study of long-term exposure to outdoor air pollution, asthma, and lung function.

    • Luke D Knibbs, Adriana M Cortés de Waterman, Brett G Toelle, Yuming Guo, Lyn Denison, Bin Jalaludin, Guy B Marks, and Gail M Williams.
    • Faculty of Medicine, School of Public Health, The University of Queensland, Herston, QLD 4006, Australia; Centre for Air Pollution, Energy and Health Research, Glebe, NSW 2037, Australia. Electronic address: l.knibbs@uq.edu.au.
    • Environ Int. 2018 Nov 1; 120: 394-403.

    AbstractMost studies of long-term air pollution exposure and children's respiratory health have been performed in urban locations with moderate pollution levels. We assessed the effect of outdoor nitrogen dioxide (NO2), as a proxy for urban air pollution, on current asthma and lung function in Australia, a low-pollution setting. We undertook a national population-based cross-sectional study of children aged 7-11 years living in 12 Australian cities. We collected information on asthma symptoms from parents via questionnaire and measured children's lung function (forced expiratory volume in 1 s [FEV1], forced vital capacity [FVC]) and fractional exhaled nitric oxide [FeNO]). We estimated recent NO2 exposure (last 12 months) using monitors near each child's school, and used a satellite-based land-use regression (LUR) model to estimate NO2 at each child's school and home. Our analysis comprised 2630 children, among whom the prevalence of current asthma was 14.9%. Mean (±SD) NO2 exposure was 8.8 ppb (±3.2) and 8.8 ppb (±2.3) for monitor- and LUR-based estimates, respectively. Mean percent predicted post-bronchodilator FEV1 and FVC were 101.7% (±10.5) and 98.8% (±10.5), respectively. The geometric mean FeNO concentration was 9.4 ppb (±7.1). An IQR increase in NO2 (4.0 ppb) was significantly associated with increased odds of having current asthma; odds ratios (ORs) were 1.24 (95% CI: 1.08, 1.43) and 1.54 (95% CI: 1.26, 1.87) for monitor- and LUR-based estimates, respectively. Increased NO2 exposure was significantly associated with decreased percent predicted FEV1 (-1.35 percentage points [95% CI: -2.21, -0.49]) and FVC (-1.19 percentage points [95% CI: -2.04, -0.35], and an increase in FeNO of 71% (95% CI: 38%, 112%). Exposure to outdoor NO2 was associated with adverse respiratory health effects in this population-based sample of Australian children. The relatively low NO2 levels at which these effects were observed highlight the potential benefits of continuous exposure reduction.Copyright © 2018 Elsevier Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.