• Br J Anaesth · Sep 2020

    Resistance to state transitions in responsiveness is differentially modulated by different volatile anaesthetics in male mice.

    • Andrzej Z Wasilczuk, Benjamin A Harrison, Paula Kwasniewska, Bo Ku, Max B Kelz, Andrew R McKinstry-Wu, and Alex Proekt.
    • Department of Anaesthesiology and Critical Care, Perelman School of Medicine, Philadelphia, PA, USA; Department of Bioengineering, School of Engineering and Applied Science, Philadelphia, PA, USA.
    • Br J Anaesth. 2020 Sep 1; 125 (3): 308-320.

    BackgroundRecent studies point to a fundamental distinction between population-based and individual-based anaesthetic pharmacology. At the population level, anaesthetic potency is defined as the relationship between drug concentration and the likelihood of response to a stimulus. At the individual level, even when the anaesthetic concentration is held constant, fluctuations between the responsive and unresponsive states are observed. Notably, these spontaneous fluctuations exhibit resistance to state transitions Rst. Therefore, the response probability in each individual depends not just upon the drug concentration, but also upon responses to previous stimuli. Here, we hypothesise that Rst is distinct from drug potency and is differentially modulated by different anaesthetics.MethodsAdult (14-24 weeks old) C57BL/6J male mice (n=60) were subjected to repeated righting reflex (RR) assays at equipotent steady-state concentrations of isoflurane (0.6 vol%), sevoflurane (1.0 vol%), and halothane (0.4 vol%).ResultsFluctuations in RR were observed for all tested anaesthetics. Analysis of these fluctuations revealed that Rst was differentially modulated by different anaesthetics (F[2, 56.01]=49.59; P<0.0001). Fluctuations in RR were modelled using a stochastic dynamical system. This analysis confirmed that the amount of noise that drives behavioural state transitions depends on the anaesthetic agent (F[2, 42.86]=16.72; P<0.0001).ConclusionsWhilst equipotent doses of distinct anaesthetics produce comparable population response probabilities, they engage dramatically different dynamics in each individual animal. This manifests as a differential aggregate propensity to exhibit state transitions. Thus, resistance to state transitions is a fundamentally distinct, novel measure of individualised anaesthetic pharmacology.Copyright © 2020 British Journal of Anaesthesia. Published by Elsevier Ltd. All rights reserved.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.