• Neuromodulation · Jul 2008

    The effect of using variable frequency trains during functional electrical stimulation cycling.

    • Simona Ferrante, T Schauer, Giancarlo Ferrigno, Jorg Raisch, and Franco Molteni.
    • Neuroengineering and Medical Robotics Laboratory, Bioengineering Department, Politecnico di Milano, Milano, Italy; Technische Universität Berlin, Fachgebiet Regelungssysteme (Control Systems Group), Berlin, Germany; Max Planck Institute for Dynamics of Complex Technical Systems, Systems and Control Theory Group, Magdeburg, Germany; and Centro di Riabilitazione Villa Beretta, Ospedale Valduce, Costa Masnaga, Lecco, Italy.
    • Neuromodulation. 2008 Jul 1;11(3):216-26.

    AbstractObjectives.  This paper describes an experimental investigation of variable frequency stimulation patterns as a means of increasing torque production and, hence, performance in cycling induced by functional electrical stimulation. Materials and Methods.  Experiments were conducted on six able-bodied subjects stimulating both quadriceps during isokinetic trials. Constant-frequency trains (CFT) with 50-msec interpulse intervals and four catchlike-inducing trains (CIT) were tested. The CITs had an initial, brief, high-frequency burst of two pulses at the onset of or within a subtetanic low-frequency stimulation train. Each stimulation train consisted of the same number of pulses. The active torques produced by each train were compared. Parametric main effect ANOVA tests were performed on the active torque-time integral (TTI), on the active torque peaks and on the time needed to reach those peaks (T2P). Results.  The electrical stimulation of the quadriceps produced active torques with mean peak values in the range of 1.6-3.5 Nm and a standard error below 0.2 Nm. CITs produced a significant increase of TTI and torque peaks compared with CFTs in all the experimental conditions. In particular, during the postfatigue trials, the CITs with the doublet placed in the middle of the train produced TTIs and torque peaks about 61% and 28% larger than the CFT pattern, respectively. In addition, the CITs showed the lowest reduction of the performance between prefatigue and postfatigue conditions. Conclusions.  The use of CITs improves the functional electrical stimulation cycling performance compared with CFT stimulation. This application might have a relevant clinical importance for individuals with stroke where the residual sensation is still present and thus the maximization of the performance without an excessive increase of the stimulation intensity is advisable. Therefore, exercise intensity can be increased yielding a better muscle strength and endurance that may be beneficially for later gait training in individuals with stroke.© 2008 International Neuromodulation Society.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,624,503 articles already indexed!

We guarantee your privacy. Your email address will not be shared.