-
- Albert H Vette, Kei Masani, Joon-Young Kim, and Milos R Popovic.
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada Toronto Rehabilitation Institute, Lyndhurst Centre, Toronto, Ontario, Canada Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada.
- Neuromodulation. 2009 Jan 1;12(1):22-32.
AbstractObjectives. The purpose of the present study was to show that the design of a neuroprosthesis for unsupported (arm-free) standing is feasible. We review findings suggesting that a closed-loop controlled functional electrical stimulation (FES) system should be able to facilitate arm-free quiet standing in individuals with spinal cord injury (SCI). Particularly, this manuscript identifies: 1) a control strategy that accurately mimics the strategy healthy individuals apply to regulate the ankle joint position during quiet standing and 2) the degrees of freedom (DOF) of the redundant, closed-chain dynamic system of bipedal stance that have to be regulated to facilitate stable standing. Methods and Results. First, we utilized a single DOF model of quiet standing (inverted pendulum) to analytically identify a proportional and derivative (PD) feedback controller that regulates the ankle torque in a physiologic manner despite a long sensory-motor time delay. Second, these theoretic results were experimentally validated by implementing the proposed PD controller to stabilize an individual with SCI during quiet standing. Third, a realistic, three-dimensional dynamic model of quiet standing with 12 DOF was used to determine the optimal combination of the minimum number of DOF that need to be regulated with the PD controller to ensure stability during quiet standing. Finally, perturbation simulations confirmed that the kinematics of this system are similar to those of healthy individuals during perturbed standing. Conclusions. The presented results suggest that stable standing can be achieved in individuals with SCI by controlling only six DOF in the lower limbs using FES, and that a PD controller actuating these DOF can stabilize the system despite a long sensory-motor time delay. Our finding that not all DOF in the lower limbs need to be regulated is particularly relevant for individuals with complete SCI, because some of their muscles may be denervated or difficult to access.© 2009 International Neuromodulation Society.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.