• Lancet · Aug 2020

    COVID-19 pandemic and admission rates for and management of acute coronary syndromes in England.

    • Marion M Mafham, Enti Spata, Raphael Goldacre, Dominic Gair, Paula Curnow, Mark Bray, Sam Hollings, Chris Roebuck, Chris P Gale, Mamas A Mamas, John E Deanfield, Mark A de Belder, Thomas F Luescher, Tom Denwood, Martin J Landray, Jonathan R Emberson, Rory Collins, MorrisEva J AEJAClinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, Oxford, UK; Big Data Institute, Nuffield Department of Population Health, Oxford, UK., Barbara Casadei, and Colin Baigent.
    • Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, Oxford, UK.
    • Lancet. 2020 Aug 8; 396 (10248): 381389381-389.

    BackgroundSeveral countries affected by the COVID-19 pandemic have reported a substantial drop in the number of patients attending the emergency department with acute coronary syndromes and a reduced number of cardiac procedures. We aimed to understand the scale, nature, and duration of changes to admissions for different types of acute coronary syndrome in England and to evaluate whether in-hospital management of patients has been affected as a result of the COVID-19 pandemic.MethodsWe analysed data on hospital admissions in England for types of acute coronary syndrome from Jan 1, 2019, to May 24, 2020, that were recorded in the Secondary Uses Service Admitted Patient Care database. Admissions were classified as ST-elevation myocardial infarction (STEMI), non-STEMI (NSTEMI), myocardial infarction of unknown type, or other acute coronary syndromes (including unstable angina). We identified revascularisation procedures undertaken during these admissions (ie, coronary angiography without percutaneous coronary intervention [PCI], PCI, and coronary artery bypass graft surgery). We calculated the numbers of weekly admissions and procedures undertaken; percentage reductions in weekly admissions and across subgroups were also calculated, with 95% CIs.FindingsHospital admissions for acute coronary syndrome declined from mid-February, 2020, falling from a 2019 baseline rate of 3017 admissions per week to 1813 per week by the end of March, 2020, a reduction of 40% (95% CI 37-43). This decline was partly reversed during April and May, 2020, such that by the last week of May, 2020, there were 2522 admissions, representing a 16% (95% CI 13-20) reduction from baseline. During the period of declining admissions, there were reductions in the numbers of admissions for all types of acute coronary syndrome, including both STEMI and NSTEMI, but relative and absolute reductions were larger for NSTEMI, with 1267 admissions per week in 2019 and 733 per week by the end of March, 2020, a percent reduction of 42% (95% CI 38-46). In parallel, reductions were recorded in the number of PCI procedures for patients with both STEMI (438 PCI procedures per week in 2019 vs 346 by the end of March, 2020; percent reduction 21%, 95% CI 12-29) and NSTEMI (383 PCI procedures per week in 2019 vs 240 by the end of March, 2020; percent reduction 37%, 29-45). The median length of stay among patients with acute coronary syndrome fell from 4 days (IQR 2-9) in 2019 to 3 days (1-5) by the end of March, 2020.InterpretationCompared with the weekly average in 2019, there was a substantial reduction in the weekly numbers of patients with acute coronary syndrome who were admitted to hospital in England by the end of March, 2020, which had been partly reversed by the end of May, 2020. The reduced number of admissions during this period is likely to have resulted in increases in out-of-hospital deaths and long-term complications of myocardial infarction and missed opportunities to offer secondary prevention treatment for patients with coronary heart disease. The full extent of the effect of COVID-19 on the management of patients with acute coronary syndrome will continue to be assessed by updating these analyses.FundingUK Medical Research Council, British Heart Foundation, Public Health England, Health Data Research UK, and the National Institute for Health Research Oxford Biomedical Research Centre.Copyright © 2020 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license. Published by Elsevier Ltd.. All rights reserved.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.