• FASEB J. · Apr 2019

    Kartogenin preconditioning commits mesenchymal stem cells to a precartilaginous stage with enhanced chondrogenic potential by modulating JNK and β-catenin-related pathways.

    • Hui Jing, Xiaoyang Zhang, Manchen Gao, Kai Luo, Wei Fu, Meng Yin, Wei Wang, Zhongqun Zhu, Jinghao Zheng, and Xiaomin He.
    • Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
    • FASEB J. 2019 Apr 1; 33 (4): 5641-5653.

    AbstractCartilage engineering strategies using mesenchymal stem cells (MSCs) could provide preferable solutions to resolve long-segment tracheal defects. However, the drawbacks of widely used chondrogenic protocols containing TGF-β3, such as inefficiency and unstable cellular phenotype, are problematic. In our research, to optimize the chondrogenic differentiation of human umbilical cord MSCs (hUCMSCs), kartogenin (KGN) preconditioning was performed prior to TGF-β3 induction. hUCMSCs were preconditioned with 1 μM of KGN for 3 d, sequentially pelleted, and incubated with TGF-β3 for 28 d. Then, the expression of chondrogenesis- and ossification-related genes was evaluated by immunohistochemistry and RT-PCR. The underlying mechanism governing the beneficial effects of KGN preconditioning was explored by phosphorylated kinase screening and validated in vitro and in vivo using JNK inhibitor (SP600125) and β-catenin activator (SKL2001). After KGN preconditioning, expression of fibroblast growth factor receptor 3, a marker of precartilaginous stem cells, was up-regulated in hUCMSCs. Furthermore, the KGN-preconditioned hUCMSCs efficiently differentiated into chondrocytes with elevated chondrogenic gene ( SOX9, aggrecan, and collagen II) expression and reduced expression of ossific genes (collagen X and MMP13) compared with hUCMSCs treated with TGF-β3 only. Phosphokinase screening indicated that the beneficial effects of KGN preconditioning are directly related to an up-regulation of JNK phosphorylation and a suppression of β-catenin levels. Blocking and activating tests revealed that the prochondrogenic effects of KGN preconditioning was achieved mainly by activating the JNK/Runt-related transcription factor (RUNX)1 pathway, and antiossific effects were imparted by suppressing the β-catenin/RUNX2 pathway. Eventually, tracheal patches, based on KGN-preconditioned hUCMSCs and TGF-β3 encapsulated electrospun poly( l-lactic acid-co-ε-caprolactone)/collagen nanofilms, were successfully used for restoring tracheal defects in rabbit models. In summary, KGN preconditioning likely improves the chondrogenic differentiation of hUCMSCs by committing them to a precartilaginous stage with enhanced JNK phosphorylation and suppressed β-catenin. This novel protocol consisting of KGN preconditioning and subsequent TGF-β3 induction might be preferable for cartilage engineering strategies using MSCs.-Jing, H., Zhang, X., Gao, M., Luo, K., Fu, W., Yin, M., Wang, W., Zhu, Z., Zheng, J., He, X. Kartogenin preconditioning commits mesenchymal stem cells to a precartilaginous stage with enhanced chondrogenic potential by modulating JNK and β-catenin-related pathways.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.