• Biological psychiatry · Sep 2016

    Sex Differences in Effects of Ketamine on Behavior, Spine Density, and Synaptic Proteins in Socially Isolated Rats.

    • Ambalika Sarkar and Mohamed Kabbaj.
    • Department of Biomedical Sciences, Program in Neuroscience, College of Medicine, Florida State University, Tallahassee, Florida.
    • Biol. Psychiatry. 2016 Sep 15; 80 (6): 448-456.

    BackgroundThe mechanistic underpinnings of sex differences in occurrence of depression and efficacy of antidepressant treatments are poorly understood. We examined the effects of isolation stress (IS) and the fast-acting antidepressant ketamine on anhedonia and depression-like behavior, spine density, and synaptic proteins in male and female rats.MethodsWe used a chronic social IS paradigm to test the effects of ketamine (0, 2.5 mg/kg, and 5 mg/kg) on behavior and levels of synaptic proteins synapsin-1, postsynaptic density protein 95, and glutamate receptor 1 in male rats and female rats in diestrus. Medial prefrontal cortex spine density was also examined in male rats and female rats that received ketamine during either the diestrus or the proestrus phase of their estrous cycle.ResultsMale rats showed anhedonia and depression-like behavior after 8 weeks of IS, concomitant with decreases in spine density and levels of synapsin-1, postsynaptic density protein 95, and glutamate receptor 1 in the medial prefrontal cortex; these changes were reversed by a single injection of ketamine (5 mg/kg). After 11 weeks of IS, female rats showed depression-like behavior but no signs of anhedonia. Although both doses of ketamine rescued depression-like behavior in female rats, the decline observed in synaptic proteins and spine density in IS and in diestrus female rats could not be reversed by ketamine. Spine density was higher in female rats during proestrus than in diestrus.ConclusionsOur findings implicate a role for synaptic proteins synapsin-1, postsynaptic density protein 95, and glutamate receptor 1 and medial prefrontal cortex spine density in the antidepressant effects of ketamine in male rats subjected to IS but not in female rats subjected to IS, suggesting dissimilar underlying mechanisms for efficacy of ketamine in the two sexes.Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.