-
Observational Study
Does metabolic alkalosis influence cerebral oxygenation in infantile hypertrophic pyloric stenosis?
- Matthias Nissen, Grigore Cernaianu, Rene Thränhardt, Mohammad R Vahdad, Karin Barenberg, and Ralf-Bodo Tröbs.
- Department of Pediatric Surgery, St. Mary's Hospital, St. Elisabeth Group, Ruhr-University of Bochum, Herne, Germany. Electronic address: matthias.nissen@elisabethgruppe.de.
- J. Surg. Res. 2017 May 15; 212: 229-237.
BackgroundThis pilot study focuses on regional tissue oxygenation (rSO2) in patients with infantile hypertrophic pyloric stenosis in a perioperative setting. To investigate the influence of enhanced metabolic alkalosis (MA) on cerebral (c-rSO2) and renal (r-rSO2) tissue oxygenation, two-site near-infrared spectroscopy (NIRS) technology was applied.Materials And MethodsPerioperative c-rSO2, r-rSO2, capillary blood gases, and electrolytes from 12 infants were retrospectively compared before and after correction of MA at admission (T1), before surgery (T2), and after surgery (T3).ResultsCorrection of MA was associated with an alteration of cerebral oxygenation without affecting renal oxygenation. When compared to T1, 5-min mean (± standard deviation) c-rSO2 increased after correction of MA at T2 (72.74 ± 4.60% versus 77.89 ± 5.84%; P = 0.058), reaching significance at T3 (80.79 ± 5.29%; P = 0.003). Furthermore, relative 30-min c-rSO2 values at first 3 h of metabolic compensation were significantly lowered compared with postsurgical states at 16 and 24 h. Cerebral oxygenation was positively correlated with levels of sodium (r = 0.37; P = 0.03) and inversely correlated with levels of bicarbonate (r = -0.34; P = 0.05) and base excess (r = -0.36; P = 0.04). Analysis of preoperative and postoperative cerebral and renal hypoxic burden yielded no differences. However, a negative correlation (r = -0.40; P = 0.03) regarding hematocrite and mean r-rSO2, indirectly indicative of an increased renal blood flow under hemodilution, was obtained.ConclusionsNIRS seems suitable for the detection of a transiently impaired cerebral oxygenation under state of pronounced MA in infants with infantile hypertrophic pyloric stenosis. Correction of MA led to normalization of c-rSO2. NIRS technology constitutes a promising tool for optimizing perioperative management, especially in the context of a possible diminished neurodevelopmental outcome after pyloromyotomy.Copyright © 2017 Elsevier Inc. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.