• Epilepsy research · Feb 2019

    Case Reports

    High-frequency oscillations and spikes running down after SEEG-guided thermocoagulations in the epileptogenic network of periventricular nodular heterotopia.

    • Julia Scholly, Francesca Pizzo, Alexander Timofeev, Maria Paola Valenti-Hirsch, Irène Ollivier, François Proust, Nicolas Roehri, Christian-George Bénar, Edouard Hirsch, and Fabrice Bartolomei.
    • University of Strasbourg, Epilepsy Unit, Hautepierre Hospital, Strasbourg, France; Aix Marseille University, Service de Neurophysiologie Clinique, Hôpital Timone, Marseille, France.
    • Epilepsy Res. 2019 Feb 1; 150: 27-31.

    ObjectiveEpilepsy associated with periventricular nodular heterotopia (PNH) is characterized by complex relationships between the heterotopic and the normotopic cortex during the interictal state and at seizure onset. High-frequency oscillations (HFO) have been proposed as a marker of epileptogenicity that might reflect disease activity. The effects of thermocoagulations on epileptogenicity in this context remain unknown. We aimed to investigate the interictal HFO- and spike profiles of different cortical structures before and after two consecutive SEEG-guided thermocoagulations, in correlation with seizure outcome, in a patient with PNH-related drug-resistant epilepsy.MethodsThe epileptogenic zone (EZ) was defined by SEEG analysis based on the Epileptogenicity Index. Interictal spikes, ripples (80-250 Hz) and fast ripples (FR, 250-330 Hz) were analyzed within the heterotopia, the temporal neocortex and the hippocampus.ResultsThe SEEG recordings revealed a distributed EZ involving the heterotopia and the posterior temporal neocortex. Both structures were targeted by thermocoagulations. Background spikes, ripples and FR-rates were significantly higher in PNH compared to the normotopic cortex. A drastic reduction of spikes (by over 80%) and absence of FR were demonstrated both in the PNH and in the neocortex during the second SEEG exploration 6 months after the first thermocoagulation, whereas no significant difference was observed in the posterior hippocampus. Ripples were significantly reduced by the first and suppressed by the second thermocoagulation within the three structures. Seizures relapsed after two months but decreased in frequency after the first thermocoagulation. Sustained seizure-freedom was achieved only after the second procedure.ConclusionsOur data demonstrate the running down of interictal HFO and spikes within the epileptogenic network following thermocoagulations of heterotopic and normotopic sites involved at seizure onset. This dynamics was in good correlation with significantly improved seizure control.SignificanceCombination of ictal and different interictal markers of epileptogenicity, including HFO and spike analysis, is important to get the full picture of the epileptogenic zone and could help to evaluate the disease activity.Copyright © 2018 Elsevier B.V. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…