-
- Hadi Fayad, Holger Schmidt, Christian Wuerslin, and Dimitris Visvikis.
- INSERM, UMR1101, LaTIM, CHRU Morvan, Université de Bretagne Occidentale, Brest, France; and fayad@univ-brest.fr.
- J. Nucl. Med. 2015 Jun 1; 56 (6): 884-9.
UnlabelledSimultaneous PET and MR imaging is a promising new technique allowing the fusion of functional (PET) and anatomic/functional (MR) information. In the thoracic-abdominal regions, respiratory motion is a major challenge leading to reduced quantitative and qualitative image accuracy. Correction methodologies include the use of gated frames that lead to low signal-to-noise ratio considering the associated low statistics. More advanced correction approaches, previously developed for PET/CT imaging, consist of either registering all the reconstructed gated frames to the reference frame or incorporating motion parameters into the iterative reconstruction process to produce a single motion-compensated PET image. The goal of this work was to compare these two—previously implemented in PET/CT—correction approaches within the context of PET/MR motion correction for oncology applications using clinical 4-dimensional PET/MR acquisitions. Two different correction approaches were evaluated comparing the incorporation of elastic transformations extracted from 4-dimensional MR imaging datasets during PET list-mode image reconstruction to a postreconstruction image-based approach.MethodsEleven patient datasets acquired on a PET/MR system were used. T1-weighted 4D MR images were registered to the end-expiration image using a nonrigid B-spline registration algorithm to derive deformation matrices accounting for respiratory motion. The derived matrices were subsequently incorporated within a PET image reconstruction of the original emission list-mode data (reconstruction space [RS] method). The corrected images were compared with those produced by applying the deformation matrices in the image space (IS method) followed by summing the realigned gated frames, as well as with uncorrected motion-averaged images.ResultsBoth correction techniques led to significant improvement in accounting for respiratory motion artifacts when compared with uncorrected motion-averaged images. These improvements included signal-to-noise ratio (mean increase of 28.0% and 24.2% for the RS and IS methods, respectively), lesion size (reduction of 60.4% and 47.9%, respectively), lesion contrast (increase of 70.1% and 57.2%, respectively), and lesion position (changes of 60.9% and 46.7%, respectively).ConclusionOur results demonstrate significant respiratory motion compensation using both methods, with superior results from a 4D PET RS approach.© 2015 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.