-
- Whitney M Poser, Kara A Trautman, Nathan D Dicks, Bryan K Christensen, Katie J Lyman, and Kyle J Hackney.
- North Dakota State University, PO Box 6050, Department 2620, Fargo, ND 58108.
- Mil Med. 2019 Oct 1; 184 (9-10): e406-e411.
IntroductionThe purpose of the current study was to examine if isometric peak force and rate of force development (RFD) were related to the ability to successfully perform a simulated casualty evacuation task in both unweighted and weighted conditions.MethodsEighteen male participants from Army Reserve Officers' Training Corps (ROTC) completed a maximum isometric deadlift on a force plate (IRB#HE16227). Isometric peak force and RFD were calculated from ground reaction force. Two simulated casualty evacuation performance trials were then completed. The unweighted trial consisted of lifting and carrying a 75 kg dummy as quickly as possible for 50 m. The weighted trial was similar except 9 kg vests were added to both the simulation dummy and the participant to represent 18 kg of duty gear. Independent sample t-tests and Pearson correlations were performed to compare the characteristics of those who passed and failed the weighted trial.ResultsAll of the participants (n = 18) completed the unweighted casualty evacuation trial, while 72% (n = 13) were able to complete the weighted casualty evacuation trial. The participants that successfully completed the weighted evacuation trial had significantly (p < 0.05) greater isometric peak force (1420 ± 165 vs. 1076 ± 256 N) and lean mass (74.18 ± 3.89 vs. 65.34 ± 3.89 kg) when compared to participants (n = 5) that could not complete the weighted evacuating task trial. Additionally, greater Army Physical Fitness Test scores (288 ± 13 vs. 269 ± 16 arbitrary units) and significantly faster (30.34 ± 4.41 vs. 44.92 ± 10.62 seconds) unweighted evacuation trial times were observed in participants that could complete the weighted evacuation task. Peak force was also significantly correlated with lean mass (r = 0.51, p < 0.05). There was no relationship between RFD and performance of the unweighted or weight trial.ConclusionIsometric deadlift peak force represents an important determinant for the success of a simulated casualty evacuation task and may be a useful marker to include in periodic fitness evaluations of military personnel.© Association of Military Surgeons of the United States 2019. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.