• Crit Care · Jul 2020

    Prediction of the development of acute kidney injury following cardiac surgery by machine learning.

    • Po-Yu Tseng, Yi-Ting Chen, Chuen-Heng Wang, Kuan-Ming Chiu, Yu-Sen Peng, Shih-Ping Hsu, Kang-Lung Chen, Chih-Yu Yang, and LeeOscar Kuang-ShengOKInstitute of Clinical Medicine, School of Medicine, National Yang-Ming University, No. 155, Section 2, Li-Nong Street, Beitou District, Taipei, 11221, Taiwan. oscarlee9203@gmail.com.Stem Cell Research Center, National Yang-Ming Unive.
    • Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, No. 155, Section 2, Li-Nong Street, Beitou District, Taipei, 11221, Taiwan.
    • Crit Care. 2020 Jul 31; 24 (1): 478.

    BackgroundCardiac surgery-associated acute kidney injury (CSA-AKI) is a major complication that results in increased morbidity and mortality after cardiac surgery. Most established prediction models are limited to the analysis of nonlinear relationships and fail to fully consider intraoperative variables, which represent the acute response to surgery. Therefore, this study utilized an artificial intelligence-based machine learning approach thorough perioperative data-driven learning to predict CSA-AKI.MethodsA total of 671 patients undergoing cardiac surgery from August 2016 to August 2018 were enrolled. AKI following cardiac surgery was defined according to criteria from Kidney Disease: Improving Global Outcomes (KDIGO). The variables used for analysis included demographic characteristics, clinical condition, preoperative biochemistry data, preoperative medication, and intraoperative variables such as time-series hemodynamic changes. The machine learning methods used included logistic regression, support vector machine (SVM), random forest (RF), extreme gradient boosting (XGboost), and ensemble (RF + XGboost). The performance of these models was evaluated using the area under the receiver operating characteristic curve (AUC). We also utilized SHapley Additive exPlanation (SHAP) values to explain the prediction model.ResultsDevelopment of CSA-AKI was noted in 163 patients (24.3%) during the first postoperative week. Regarding the efficacy of the single model that most accurately predicted the outcome, RF exhibited the greatest AUC (0.839, 95% confidence interval [CI] 0.772-0.898), whereas the AUC (0.843, 95% CI 0.778-0.899) of ensemble model (RF + XGboost) was even greater than that of the RF model alone. The top 3 most influential features in the RF importance matrix plot were intraoperative urine output, units of packed red blood cells (pRBCs) transfused during surgery, and preoperative hemoglobin level. The SHAP summary plot was used to illustrate the positive or negative effects of the top 20 features attributed to the RF. We also used the SHAP dependence plot to explain how a single feature affects the output of the RF prediction model.ConclusionsIn this study, machine learning methods were successfully established to predict CSA-AKI, which determines risks following cardiac surgery, enabling the optimization of postoperative treatment strategies to minimize the postoperative complications following cardiac surgeries.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.